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From computer scientists awareness...

Convolutional Neural Networks (LeNet-5, 1998,..., ResNet, 2015)

Generative adversarial networks (2014)

Transformer (2017)

AlphaZero (2018)

... to global awareness

ChatGPT (followed by Llama, Mistral, etc.)

Diffusion model (Dall·E, Midjourney, Stable Diffusion)

2024 Nobel Prizes in Physics and in Chemistry
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Introduction

An idea that started taking roots:

How can AI help mathematicians ?

Basic usage:

asking a math question to an LLM / asking to prove a small lemma

terrible answers (2022-2023)

but models are evolving quickly

Deepseek R3; OpenAI o3,o4, GPT-5; Mistral Magistral, Gemini-2.5 Pro
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ArxivMathBench (Peyronnet, Glöckle, A.H., 2025): a live benchmark of Lemma extracted from latest
arxiv papers

Directly a research problem

Mitigate data-contamination by updating regularly from the latest arxiv paper

Model Proof Accept. (%) Human confidence score (%)
GPT-5 12.3 86
Gem-2.5 7 88
Deepseek-R 11.9 81

AI for mathematics 6= generic LLM
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Conjecture (Euler, 1769)

If there exist integers a1, a2,...,ak , b, and n such that

an1 + an2 + ... + ank = bn,

then k ≥ n.

A problem open for almost 200 years
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275 + 845 + 1105 + 1335 = 1445
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Can AI be useful to solve more complicated problems?

Problems where the difficulty is not just a high number of case-checking?
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AI for mathematical discovery

Paradigm: Intuition, an important concept in mathematics

In a number of open problems, intuition resembles a kind of pattern recognition. You’ve seen

plenty of examples, and this gives you an idea of how to proceed in a case you’ve never seen.

Can we train an AI to have better mathematical intuition than us?

Yes

One example from one field of mathematics: stability of dynamical systems
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A system of differential equations
ẋ(t) = f (x(t)),

where x(t) ∈ Rn, f ∈ C 1(Rn) and f (0) = 0.

Question (System Stability)

Is it true that for every ε > 0, there exists δ > 0 such that if the initial condition satisfies ‖x(0)‖ ≤ δ
then the solution x(t) exists for all t ∈ [0,+∞) and

‖x(t)‖ ≤ ε, ∀ t ∈ [0,+∞).

Are all solutions arbitrarily bounded if the initial condition is sufficiently small?
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Stability of Dynamical Systems

A problem that has interested mathematicians for over a hundred years.
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Stability of Dynamical Systems

A significant advancement: Lyapunov functions

Theorem

If there exists a function V ∈ C 1(Rn;R) such that for all x ∈ Rn

V (x) > V (0), and ∇V (x) · f (x) ≤ 0,

and
lim

‖x‖→+∞
V (x) = +∞,

then the system is stable.
A. Lyapunov (1857-1918)

Nothing tells us how to find such a function V ...
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Stability of Dynamical Systems

Nothing tells us how to find such a function V ...

And it’s not a simple problem.

ẋ(t) =


−6x4

1 (t)x5
2 (t)− 3x7

1 (t)x2
3 (t)

3x9
1 (t)− 6x2

1 (t)x5
2 (t)x2

3 (t)

−4x2
1 (t)x5

3 (t)


The system is stable, a Lyapunov function is

V (x) = x6
1 + 2(x6

2 + x4
3 )
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Stability of Dynamical Systems

Motivating example: boundary stabilization of the Saint-Venant equations
∂tH + ∂x(HV ) = 0,

∂tV + ∂x(
V 2

2
+ gH)− Sb(x) + S(V ,H, x) = 0

V (t, 0) = G1(A(t, 0)), V (t, L) = G2(A(t, L))

Theorem (A.H., Shang, 2019)

There exists explicit simple conditions on G1 and G2 such that system is exponentially stable for the H2

norm for any L > 0, Sb and S.

Remarkable:

Explicit control which does not need the knowledge of S and Sb

Holds for any length of the domain → something experts in the field thought impossible.

Behind: a Lyapunov function, hard to find
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Stability of Dynamical Systems

Today, more than a hundred years later, it is still an open question:

there is still no systematic way to construct a Lyapunov function.

→ We resort to intuition

Can we train an AI to have better mathematical intuition than us?

ẋ(t) =
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−6x4
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 → Yes, V (x) = x6
1 + 2(x6
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Stability of Dynamical Systems

Train an AI to have an intuition of Lyapunov functions

Global Lyapunov functions: a long-standing open problem in mathematics, with symbolic transformers
(NeurIPS, Alfarano, Charton, A.H., 2024)

Neural network architecture: Transformer (∼1000 smaller than GPT-3)

Procedure:

1. Generate a set of systems and associated Lyapunov functions.

2. Encode the examples

3. Train the language model (supervised learning)
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Stability of Dynamical Systems

How to generate examples of systems and solutions, for an open problem?

→ Use a backward approach: instead of finding a solution from the problem, we find the problem
from the solution.

Find a mathematical way to get:

V (x)︸ ︷︷ ︸
positive, random

→ all systems with Lyapunov functionV

Then sample at random.

In spirit: finding a Lyapunov function is a hard problem, checking that a function is a Lyapunov
function is easier. NP-ish flavor in some sense.

Limitations: even with a perfect generator, it biases the distribution (and it matters).
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Stability of Dynamical Systems

Train an AI to have an intuition of Lyapunov functions

Global lyapunov functions: a long-standing open problem in mathematics, with symbolic transformers
(NeurIPS, Alfarano, Charton, A.H., 2024)

Neural network architecture: Transformer (∼1000 smaller than ChatGPT)

Procedure:
1. Generate a set of systems and associated Lyapunov functions.
2. Encode the examples

(x2
1 + sin(x2)) →

+

∧

x1 2

sin

x2

→ ” + ”, ” ∧ ”, ”x1”, ”2”, ” sin ”, ”x2”

3. Train the language model (supervised learning)
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Stability of Dynamical Systems

Train an AI to have an intuition of Lyapunov functions

Global lyapunov functions: a long-standing open problem in mathematics, with symbolic transformers
(NeurIPS, Alfarano, Charton, A.H., 2024)

Neural network architecture: Transformer (∼1000 smaller than ChatGPT)

Procedure:

1. Generate a set of systems and associated Lyapunov functions.

2. Encode the examples

3. Train the language model (supervised learning)

Symbolic training (use a cross-entropy loss)
Standard techniques: priming approach, repeated examples, etc.



Mise en perspective

Stability of Dynamical Systems

Results

It works! The AI learns a mathematical intuition of Lyapunov functions.

Type n equations SOS algorithms1 AI

polynomial (train distrib.) 2-5 15% 99%
polynomial (fwd distrib.) 2-3 47% 84-93%

Non-polynomial 2-3 ∼ 0% 87%

Master students accuracy: ∼ 10%

1Existing method for some polynomial systems.
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It works! The AI learns a mathematical intuition of Lyapunov functions.

Type n equations SOS algorithms2 AI

polynomial (train distrib.) 2-5 15% 99%
polynomial (fwd distrib.) 2-3 47% 84-93%

Non-polynomial 2-3 ∼ 0% 87%

My accuracy (!): ∼ 25%

Can we understand what is going on / how the model learns? → Talk of François Charton at 4:15pm

2Existing classical method for some polynomial systems
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Summary of the approach

Paradigm: Training a Transformer to have a mathematical intuition on a problem

Key points:

Generating data in a backward fashion (solution → problem)

Test out-of-distribution on “real” instances of the problem.

Used in many frameworks: explicit solutions to ODE; local controllability; eigenvalues of
random matrices; GCD; equilibrium of bio-networks, to predict quantities in elliptic curves, for
cryptography, etc.

Try it yourself:

https://github.com/ahayat16/Lyapunov/

and customize on your favorite math problem

https://github.com/ahayat16/Lyapunov/
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Many other examples

in topology feedforward and MPNNs to guess links between different mathematical quantities, in
particular hyperbolic and algebraic invariant of knots (a conjecture that was later proved) [Davies
et al., 2021]

in group theory path-finding for large graphs with ResMLP and RL [Chervov et al. 2025]

in partial differential equations PINNs to find an exact self-similar solution to 3D Euler [Wang,
Lai, Gómez-Serrano, Buckmaster, 2023] (see also Victorita Dolean-Maini’s talk at 3:30pm)

to find good mathematical constructions PatternBoost [Charton, Ellenberg, Williamson,
Wagner], AlphaEvolve [Georgiev, Gómez-Serrano, Tao, Wagner, 2025] (released two weeks ago –see
Adam Wagner’s talk at 2pm)

... and in many others fields
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Advertising

A Zulip forum on AI for Mathematics

by mathematicians

for mathematicians (...and AI scientists)

https://ai-math.zulipchat.com/join/gjeretjgqhgchcjwsh2fn7g7/

with the support of

You are most welcome to join if interested: amaury.hayat@enpc.fr
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Advertising

Automath: a Paris-based seminar for the automation of mathematics (bi-monthly)

Opening seminar in January!
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AI as a tool for math discovery

AI are already useful in the practice of mathematics and can help solve difficult problems.

AI are trained to have better intuition than humans on a specific problem.

This augmented intuition allows us to bypass the difficulty of the problem.
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Future of Mathematical AI

Can an AI prove a mathematical result on its own?



Mise en perspective

Outline of the talk

1. AI as a tool for math discovery 2. When will AI prove theorems?
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AI for Mathematical Proof

Can a trained AI find a proof for a mathematical statement?

A much harder problem

Shocking question: calls into question our very vision of mathematics

A science-fiction future that is probably (much) closer than we imagine
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Will Mathematics Exist in 2099? (GAFA, W.T. Gowers, 2000, Rough structure and classification)
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AI for Mathematical Proof

First approach: training a Transformer (GPT-f, Polu, Sutskever, 2020)

Question

Let a > 0 and b > 0, such that
ab = b − a, show that

a

b
+

b

a
− ab = 2

Proof
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Proof

Procedure: train it with examples: (exercises, proofs)

The hope is that by showing it enough examples, the AI will be capable of learning to reason, just
by learning to predict the next step each time.
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AI for Mathematical Proof

We have very few data available (especially formal).

Question

Let a > 0 and b > 0, such that ab = b − a,
show that

a

b
+

b

a
− ab = 2

informal language
formal language

→ See Patrick Massot’s talk at 11am

Lean: ∼300,000 theorems. A large dataset for humans, a small dataset for AI.

→ Limit of the approach



Mise en perspective

AI for Mathematical Proof

We have very few data available (especially formal).

Question

Let a > 0 and b > 0, such that ab = b − a,
show that

a

b
+

b

a
− ab = 2

informal language
formal language

→ See Patrick Massot’s talk at 11am

Lean: ∼300,000 theorems. A large dataset for humans, a small dataset for AI.

→ Limit of the approach



Mise en perspective

AI for Mathematical Proof

We have very few data available (especially formal).

Question

Let a > 0 and b > 0, such that ab = b − a,
show that

a

b
+

b

a
− ab = 2

informal language
formal language

→ See Patrick Massot’s talk at 11am

Lean: ∼300,000 theorems. A large dataset for humans, a small dataset for AI.

→ Limit of the approach



Mise en perspective

AI for Mathematical Proof

We have very few data available (especially formal).

Question

Let a > 0 and b > 0, such that ab = b − a,
show that

a

b
+

b

a
− ab = 2

informal language
formal language

→ See Patrick Massot’s talk at 11am

Lean: ∼300,000 theorems. A large dataset for humans, a small dataset for AI.
→ Limit of the approach



Mise en perspective

AI for Mathematical Proof

How to tackle this limit ?

Many subsequent improvements and variations

Training a retriever on the library to suggest relevant theorems: LeanDojo (Yang et al., 2023)

Fine-tuning better base LLM: LeanLlama (Glöckle et al., 2023)

Tackle the lack of data

Using additional data gathered on the internet: Llemma (Azerbayev et al., 2023), InternLM-2
(Wu et al. 2024)

Using synthetic data or automatic formalization: HyperTree Proof Search (Lample et al. 2022),
DeepSeek-Prover (Xin et al. 2024), Kimina-Prover (Wang et al. 2025) REAL-Prover (Shen et
al. 2025), Goedel-Prover-v2 (Lin et al. 2025)
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AI for Mathematical Proof

Autoformalization: a natural idea to get more formal data → train a model to translate from “natural
language proof” to formal and verifiable data.

Exercice 1

Let a > 0 and b > 0, such that ab = b − a,
show that

a

b
+

b

a
− ab = 2

informal language

→

formal language
Autoformalization: both a means and an end:

a means: more data to train AI models

an end: checking the correctness of new mathematical theories
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AI for Mathematical Proof

Autoformalization: both a means and an end

Example of contradictory papers:

Schumacher, G., Tsuji, H. (2004). Quasi-projectivity of moduli spaces of polarized varieties. Annals of
mathematics, 597-639.

Kollár, J. (2006). Non-quasi-projective moduli spaces. Annals of mathematics, 1077-1096.

A quickly improving field:

(2024) Very good statement autoformalization for olympiad style exercise (e.g. Herald, Numina,
AlphaProof)

(2025) 4% of statements in arxiv papers autoformalized automatically in most field of
mathematics

(2025) two first arxiv paper completely autoformalized by Morph Labs / Math inc (proofs
included) with little human intervention

(2025) Start of MALINCA - an ERC Synergy Grant project

Still challenges for statement and proof autoformalization in most fields of mathematics
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How to tackle this limit ?

Many subsequent improvements and variations

Training a retriever on the library to suggest relevant theorems: LeanDojo (Yang et al., 2023)

Fine-tuning better base LLM: LeanLlama (Glöckle et al., 2023)

Tackle the lack of data

Using additional data gathered on the internet: Llemma (Azerbayev et al., 2023), InternLM-2
(Wu et al. 2024)

Using synthetic data or automatic formalization: HyperTree Proof Search (Lample et al. 2022),
DeepSeek-Prover (Xin et al. 2024), Kimina Prover (Wang et al. 2025) REAL-Prover (Shen et
al. 2025), Goedel-Prover-v2 (Lin et al. 2025)

How to go further?
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Second approach: treat mathematics as a game (Lample, Lachaux, Lavril, Martinet, Hayat, Ebner,
Rodriguez, Lacroix, 2022);

Deepmind (2017)
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AI for Mathematical Proof

Main difficulties:

two-player game vs. solo against a goal.

In chess, when you play a move you always have a single game. In
mathematics: one statement → multiple statements

Difficult in mathematics to know automatically in the middle of a
proof what the probability of succeeding is.

The number of possibilities is much, much larger in mathematics

Much more difficult than chess
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AI for Mathematical Proof

In practice

Two transformers: Pθ which predicts a tactic, cθ which predicts the difficulty of proving a
statement (goal, hypothesis, etc.).

An intelligent proof search that sees the proof as a tree and combines Pθ, cθ and a tree

expansion.

Selection

N(g,t2)=0

W(g,t2)=0.1
N(g,t1) =1

W(g,t1) =0.5
N(g,t0)=1
W(g,t0)=0.3

g g
N(g,t1)=2

W(g,t1)=0.5+(1×0.1)×0.4

vT(g)=(1×0.1)×0.4

Back-propagationExpansion
gg g

vT(g1)=0.4

N(g1,t0)=1

W(g1,t0)=0.4
N(g0,t0)=1

W(g0,t0)=1x0.1

vT(g0)=1×0.1

N(g0,t0)=0

W(g0,t0)=0

g0 g0 g1g1 g0 g1

vT(g4)=0.4

N(g4,t1)=0
W(g4,t1)=0

g4

g2 g4
g2

vT(g2)=1
vT(g3)=0.1

g2 g4g3g3 g4 g2 g4g3g2 g2

g5 g6 g7

Continuously training of Pθ and cθ on successful proofs
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AI for Mathematical Proof

Results

Exercises at the undergraduate level...

...60% of middle school / high school exercises up to Olympiad level...

More recent approach
reached 90− 99% of success (Deepseek, Kimina, Seed, 2025)
→ Talk of Yann Fleureau at 11:30am

...and a few exercises from the International Mathematical Olympiads

Exercise

Show that for all n ∈ N, 7 does not divide 2n + 1.

More recent approaches reached up to a gold medal level at the International Mathematical
Olympiads (AlphaProof, 2024, Kimina, Aristotle, Seed, 2025)
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AI for Mathematical Proof

ABEL: Hypertree proof search 2.0 (Glöckle, Limperg, Synnaeve, A.H. 2024)

ABEL:Sample Efficient Online Reinforcement Learning for Neural Theorem Proving

A better AlphaZero style proof-search in the era of pre-trained models:

on-par with state of the art on high-school exercise (in Oct. 2024)

state-of-the-art on PutnamBench for 3,5 months

Very very few additional data used in the training (∼240 examples)

→ Progress are orthogonal to recent progress made with autoformalized or synthetic data

Should be open-sourced soon!
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Two types of reinforcement learning approaches:

Proof search, step by step (HTPS, ABEL, etc.)

Whole-proof generation: a new paradigm since 2024 (Deepseek-prover, Kimina-prover, etc.)

Principle: train a model with a specific type of reinforcement learning with verifiable answers →
the underlying RL (GRPO) makes it a “cheaper” method
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AI for Mathematical Proof

End-to-end sketching and proving (Glöckle, Gu, Synnaeve, A.H., 2025)

Instead of generating whole-proofs, train together:

A sketcher is trained to provide skeleton of proofs with
many lemmas

A prover is trained to prove the lemmas

Rationale: decomposition and hierarchical recursion is a
natural way to decrease the complexity when several attempts
are possible.
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AI for Mathematical Proof

A very (very) fast-moving field

2019

(r1 − r2)r3 = r1r3 − r2r3

HOList, LPLG

2022

∀ n ∈ N, ¬7 | 2n + 1

GPT-f, Thor/DSP, HTPS

2024

Silver medal Inter. Math. Olymp.

Llemma, LeanDojo, InternML, DeepSeek,
ABEL, AlphaProof, etc. 2025 wouldn’t fit
on the slide

Today:

Several models obtain a gold medal at the Inter. Math. Olymp.

AI models included in Lean tactics (e.g. Lean hammer)

Models starts to have close to human performances on some problems
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Conclusion

AI methods are already useful in the practice of mathematics

AI and LLM for proving theorems is only beginning, and there are many ideas... and much
to do.

LLMs will not be the final AI tool which will be used to mathematics.

The practice of mathematics will probably change... and that’s okay.

AI will not replace mathematicians but will instead enhance them.
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Conclusion

Thank you for your attention


