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Scientific Machine Learning 
(part of Artificial Scientific Intelligence: AI4Science – Science4AI)



Classical Solvers vs Scientific ML



Importance of PDEs

Reaction-diffusion equation
Source: Kondo and Miura, Science (2010)

Einstein field equations

Source: The Event Horizon Telescope (2019)

Source: NOAA

Navier-Stokes equations

Schrödinger equation
Source: Wikipedia







Can physics-informed neural networks (PINNs) beat finite difference / finite 

element methods?

TITLE-ABS-KEY ( "physics-informed neural network"  
OR  "physics informed neural network" ) 



What is a physics-informed neural network?
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Scalability challenges of PINNs

Advantages of PINNs

• Mesh-free
• Can solve forward and inverse problems, and 

seamlessly incorporate observational data
• Mostly unsupervised
• Can perform well for high-dimensional PDEs

Limitations of PINNs

• Computational cost often high (especially 
for forward-only problems)

• Can be hard to optimise
• Challenging to scale to high-frequency, 

multi-scale problems



Scaling PINNs to high frequency / multiscale problems

Damped harmonic 
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multiscale problems
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Problem: PINNs struggle to solve high-frequency / 
multiscale problems

Damped harmonic 
oscillator

Spectral bias:

NNs tend to converge much slower on high frequencies 
than on low frequencies

Rahaman, N., et al, On the spectral bias of neural networks. 36th International Conference on 
Machine Learning, ICML (2019)
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Scaling PINNs to high frequency / multiscale problems

Damped harmonic 
oscillator

As higher frequencies are added:

• More collocation points required (∝ 𝜔𝑑)

• Larger neural network required (∝ 𝑓(𝜔))
• Spectral bias slows convergence (∝ 𝑠(𝜔))

 Empirically, cost of training often 

~ 𝒪(𝜔𝑑𝑓 𝜔 𝑠 𝜔 )

c.f. FD simulation, where cost of simulation 

can scale like ~𝒪(𝜔𝑑)

Problem: PINNs struggle to solve high-frequency / 
multiscale problems





This behaviour can limit the model’s ability to scale effectively, especially when the goal is 
to approximate complex scientific data with both large-scale and fine-scale dynamics.



Divide and conquer approaches tackle spectral bias

Partition of Unity Networks (POUNets) offer several mechanisms to mitigate 
spectral bias, especially in the context of scaling SciML models. 

•Partitioning the domain into smaller regions,
•Allowing localized learning of high-frequency features.
•Leveraging multiscale representations, and
•Ensuring smooth transitions across regions



PINNs + domain decomposition

Idea:

Take a “divide-and-conquer” strategy to model more 
complex problems:

1. Divide modelling domain into many smaller 

subdomains

2. Use a separate neural network in each subdomain to 

model the solution

Hypothesis:

The resulting (coupled) local optimization problems are 

easier to solve than a single global problem

Jagtap, A., et al., Extended physics-informed neural networks (XPINNs): A 
generalized space-time domain decomposition based deep learning 

framework for nonlinear partial differential equations. Communications 
in Computational Physics (2020)



Finite basis PINNs (FBPINNs)

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain 
decomposition approach for solving differential equations, ACM (2023)

Idea: use overlapping subdomains and a 
globally defined solution ansatz
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FBPINNs in 1D
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FBPINNs in 1D

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain 
decomposition approach for solving differential equations, ACM (2023)

Notes:
• FBPINNs can be trained with same loss function as PINNs
• And can simply be thought of as a “custom architecture”
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FBPINNs vs PINNs

FBPINN solution

Damped harmonic 
oscillator

Number of subdomains: 15
Subdomain networks: 1 hidden layer, 32 hidden units

Problem: PINNs struggle to solve high-frequency / 
multiscale problems
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Multi-scale simulation with FBPINNs

Number of subdomains: 60 x 60 x 60 = 216,000
Total number of trainable parameters: 9 M



Multi-scale simulation with FBPINNs

Number of subdomains: 60 x 60 x 60 = 216,000
Total number of trainable parameters: 9 M

FD simulation time: ~5 mins on CPU!Training time: ~2 hrs on GPU (with 
optimised code)



Why are FBPINNs still slow?
As higher frequencies are added:

• More collocation points required (∝ 𝜔𝑑)

• Same size network can be used in each 

subdomain 

• Domain decomposition alleviates spectral 

bias

 Empirically, cost of training can be closer 

to ~ 𝒪(𝜔𝑑)

BUT gradient descent is a slow optimiser

(non-convex loss requires lots of iterations + 

backprop introduces lots of overhead)

..can we avoid gradient descent altogether?



Idea – Extreme learning machines

𝑥 ො𝑢 𝑥, 𝜽 ≈ 𝑢(𝑥)

Neural network

𝑡 ො𝑢 𝑥, 𝜽, 𝒂 ≈ 𝑢(𝑥)

Extreme learning machine

All weights trainable Hidden weights are randomly initialised and fixed

Only last layer trainable

Huang, G. Bin, Zhu, Q. Y., & Siew, C. K. Extreme learning machine: 
Theory and applications. Neurocomputing. (2006). 
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Extreme learning machine (ELM) FBPINNs

Dwivedi, V., and Srinivasan, B. Physics Informed Extreme Learning Machine (PIELM)–A rapid method for the 
numerical solution of partial differential equations. Neurocomputing. (2020). 

Dong, S., and Li, Z. Local extreme learning machines and domain decomposition for solving linear and nonlinear 
partial differential equations. Computer Methods in Applied Mechanics and Engineering. (2021).
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Extreme learning machine (ELM) FBPINNs
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𝑁 = number of collocation points



This is a linear least squares problem! 

𝐿 𝒂 = 𝑀𝒂 − 𝒇 2

The global minima is given by solving

𝐴 𝒂∗ = 𝒃
Where, 

𝐴 = 𝑀𝑇𝑀
𝒃 = 𝑀𝑇𝒇

Quadratic optimisation

𝐽𝐾 × 𝐽𝐾𝐽𝐾

(normal equation)



This is a linear least squares problem! 

𝐿 𝒂 = 𝑀𝒂− 𝒇 2

The global minima is given by solving

𝐴 𝒂∗ = 𝒃
Where, 

𝐴 = 𝑀𝑇𝑀
𝒃 = 𝑀𝑇𝒇

Quadratic optimisation

𝐽𝐾 × 𝐽𝐾

𝐽𝐾

(normal equation)

• By using a linear combination of fixed basis functions, we have 
turned the loss function from non-convex to convex (quadratic)

• I.e., we can now use linear solvers to train ELM-FBPINNs, instead 
of gradient descent! 



Example – 1D harmonic oscillator

FBPINN / ELM-FBPINN:

20 subdomains

1 hidden layer, 8 hidden units (=basis functions)

Tanh activation

PINN:
2 hidden layers, 64 hidden units

Tanh activation

PINN / FBPINN: Adam optimiser, 0.001 learning rate

ELM-FBPINN: Conjugate gradient linear solver

Anderson, S., Dolean, V., Moseley, B., & Pestana, J. ELM-FBPINN: efficient finite-basis 
physics-informed neural networks. ArXiv. (2024). 



Example – 2D multi-scale Laplace

1x1 + 2x2 + 4x4 = 21 subdomains

𝑛 = 1 𝑛 = 2 𝑛 = 4 𝑛 = 5 𝑛 = 6𝑛 = 3

Ω

level 1 Ω
( 1)
1

level 2 Ω
( 2)
1 Ω

( 2)
2

level 3 Ω
( 3)
1 Ω

( 3)
2 Ω

( 3)
3 Ω

( 3)
4

level 4 Ω
( 4)
1 Ω

( 4)
2 Ω

( 4)
3 Ω

( 4)
4 Ω

( 4)
5 Ω

( 4)
6 Ω

( 4)
7 Ω

( 4)
8

...

Multi-scale problem:

∇2𝑢 𝑥1, 𝑥2 = −
2

𝑛
෍
𝑖

𝑛

2𝑖𝜋
2
sin 2𝑖𝜋𝑥1 sin 2𝑖𝜋𝑥2

Multilevel domain decomposition:

5,461 subdomains

Dolean, V., et al, Multilevel domain decomposition-based architectures 
for physics-informed neural networks, CMAME (2024) 



Example – 2D multi-scale Laplace

1x1 + 2x2 + 4x4 = 21 subdomains 5,461 subdomains

𝑛 = 1 𝑛 = 2 𝑛 = 4 𝑛 = 5 𝑛 = 6𝑛 = 3



Challenges with ELM-FBPINNs

Challenge 1: Linear dependence between basis functions ⟹ poorly conditioned matrix  𝐴 𝒂∗ = 𝒃

Conjugate gradient solver requires ~5000 iterations

𝑀 =

𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽00 … 𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽𝐽𝐾
⋮ ⋱ ⋮

𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽00 … 𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽𝐽𝐾

,

𝐴 = 𝑀𝑇𝑀



Challenges with ELM-FBPINNs

Challenge 1: Linear dependence between basis functions ⟹ poorly conditioned matrix  𝐴 𝒂∗ = 𝒃

Possible solution: use principal component analysis /

preconditioning, see:

Shang, Y., Heinlein, A., Mishra, S., & Wang, F. Overlapping Schwarz 
Preconditioners for Randomized Neural Networks with Domain 

Decomposition. ArXiv. (2024). 

𝑀 =

𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽00 … 𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽𝐽𝐾
⋮ ⋱ ⋮

𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽00 … 𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽𝐽𝐾

,

𝐴 = 𝑀𝑇𝑀



Challenges with ELM-FBPINNs

Challenge 2: Big matrix!  𝐴 𝒂∗ = 𝒃

𝐴: 𝐽𝐾 × 𝐽𝐾 𝒃: 𝐽𝐾 𝐽 = 5,461, 𝐾 = 6

𝐴: 32,766 × 32,766 = 1 billion elements!



Challenges with ELM-FBPINNs

Solution: exploit sparsity

Challenge 2: Big matrix!  𝐴 𝒂∗ = 𝒃

𝐴: 𝐽𝐾 × 𝐽𝐾 𝒃: 𝐽𝐾 𝐽 = 5,461, 𝐾 = 6

𝐴: 32,766 × 32,766 = 1 billion elements!

Use sparse solver which only uses matvec products



Can physics-informed neural networks (PINNs) beat finite 
difference / finite element methods?



Are PINNs becoming FEM?
Finite element method

𝑚
𝑑2𝑢

𝑑𝑡2
+ 𝜇

𝑑𝑢

𝑑𝑡
+ 𝑘𝑢 = 𝑓

ො𝑢 𝑡, 𝒂 =෍

𝑗

𝐽

𝑎𝑗𝜙𝑗(𝑡)

න
0

𝑇

𝜙𝑖 𝑡 𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ො𝑢 𝑡, 𝒂 𝑑𝑡 = න

0

𝑇

𝜙𝑖 𝑡 𝑓𝑑𝑡 ∀𝑖 = 0, . . , 𝐽
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𝐴: 𝐽𝐾 × 𝐽𝐾
(sparse & symmetric)

𝒃: 𝐽𝐾 𝐿,𝐷,𝑀: 𝐽 × 𝐽
(sparse & symmetric)
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ELM-FBPINN
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Can we do better i.e. how about preconditioning?

Idea: filter the redundant features in each 
block then precondition directly the least 
squares problem
Sparsity is preserved.

Local feature filtering for scalable and well-conditioned Random Feature Methods

JW van Beek, V Dolean, B Moseley, CMAME, 2025.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZzHAiHkAAAAJ&sortby=pubdate&citation_for_view=ZzHAiHkAAAAJ:kO05sadLmrgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZzHAiHkAAAAJ&sortby=pubdate&citation_for_view=ZzHAiHkAAAAJ:kO05sadLmrgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZzHAiHkAAAAJ&sortby=pubdate&citation_for_view=ZzHAiHkAAAAJ:kO05sadLmrgC


Takeaways

• From optimization to linear algebra: reframing learning as a numerical linear algebra problem 

enables new algorithmic insights and requires new methodologies.

• Scalability & robustness: extending to multilevel and overlapping decompositions could 

improve performance in large-scale or high-dimensional settings.

• Acceleration & theory: GPU implementations and convergence-rate analysis are key next 
steps.

• Beyond linear problems: the framework naturally extends to nonlinear PDEs via Newton-type 
iterations.



A change in perspective



Hybrid future
The integration of machine learning (Keplerian paradigm) and more general
artificial intelligence technologies with physical modelling based on first principles (Newtonian paradigm) 
will impact scientific computing in engineering in fundamental ways. (Stefan Kurz, ETH Zurich)
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