-=-

= ‘,.* DHOVEN UN ECHNOLO v
o 6. }%g ﬂ'g:g 3“ | .k“‘_“*r&
. o

A e |
4 y 5) : - "
e » & A & -k Fncolla%atlon—wuth §*‘A son, Tyvan e~
3 A

EoT ,{ .‘f‘ 4{ ,‘S;, & vl ,""'*? ‘/.BGE&A He“:g" 3 Moseiey' ré)eStana - .-.?-
i R i, . ok ded :

Al for science: a revolution?

FourCastNet, lead time = 0 hours

The Washington Post

WEATHER Extreme Weather Climate Capital Weather Gang Environment Climate Lab

How Big Tech Al models nailed forecast
for Hurricane Lee a week in advance

U.S. and European weather agencies are escalating their engagement with artificial intelligence as the technology
rapidly advances

.
t—2 t—1)

Pathak et al, FourCastNet: A Global Data-driven High-resolution
Weather Model using Adaptive Fourier Neural Operators, ArXiv (2022)

ERAS, lead time = 0 hours

Fourier layer

18.0

-18.0

-54.0

-90.0
360.0

| for science: a revolution?

/'/ f\

Droplets

a Learning loop

Negative
Triangularity

Actor Moasuroments

Control

Leamer f— policy —| Emmoﬂmml[

f

Replay
buffer

d Deployment
‘ Targets.

)
s

Gffine.
foodforward

f— @mutn -

parameters
A A

Control
policy

p

A_,
Votage commands

t—

Targets

@ Our architecture
(.| Contol 2
policy o
f Conventional control
Observers
e Plasma 2]
onvoen [3z] [] (2]
Cott-current| ale
Currents - control | &

L Voltages.

(/ \\

N

_

ITER-like Snowflake Elongated
shape Plasma
b
Simulated environment .
Sen: Power
| o supply
Terminae !
I é 5 Forward ,
- Grag-Shatran
r Roward Soter FGE) Ioputs: m = 92 1< 132

h Vessel cross section

X-point

Real-time
control
system

in vacuum

Vossel =)

Plasma

Active
X-point

Strike
points

a - 16Poloidal , Ohmic , Fast

fiold coils coils coil

Neural net: MLP = 3 x 256
Outputs: a = 19

Isofiux ine

Plasma
boundary

Axis R, Z
position

Baffio

Logs

Limiter

Variable Configuration Tokamak (TCV) in Lausanne, Switzerland
Source: DeepMind & SPC/EPFL

nature

Explore content v About the journal v Publish with us v

nature > articles > article

Article | Open access | Published: 16 February 2022

Magnetic control of tokamak plasmas through deep
reinforcement learning

Jonas Degrave, Federico Felici &, Jonas Buchli &2, Michael Neunert, Brendan Tracey &, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig Donner, Leslie
Eritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli, Jackie Kay, Antoine Merle,

Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva, ..

Martin Riedmiller ~ + Show authors

Nature 602, 414-419 (2022) | Cite this article

206k Accesses | 223 Citations | 2430 Altmetric | Metrics

Why now?

Neural networks date back to the 1950’s — so why is deep learning so popular today?

Rapidly increasing Hardware
amounts of data improvements

Global data volume
(Zettabytes)

2000 2010

40 Years of Microprocessor Trend Data

Source: NVIDIA

Source: Statista
« Graphical processing units

PR (GPUs)
IMAGE '{ \;) WiKIPEDIA « Highly optimised for deep
S learning (massively parallel)

Software
improvements

O PyTorch g

TensorFlow

Keras m

* Mature deep learning
frameworks

* Better training algorithms

» Deeper and more sophisticated
architectures

Scientific machine

learning

qlltonian neural networks ., , Solver 1n the 1°0P
Learned sub-gri yrocesses

DeepONets PDE-NetAlgorithm unrolling

Fourier neural ope

Physics- informed neural networks
Al Feynman

Learned regularisation

Physics-informed neural operators
Enc glng physical symmetries Neural ODEs

Machine Scientific
learning understanding
Br i
SciML

more powerful,
robust, interpretable
models

Scientific Machine Learning

(part of Artificial Scientific Intelligence: Al4Science — Science4Al)

1600s 1950s 2000s 2025
5th Era
4th Era Artificial Scientific
Data-Driven Intelligence
3rd Era Science
Computational (\
2nd Era
1st Era) Science
. Theoretical
Empirical Science D
Science D
N ‘. 'y | —————————
*
o | & ==
* X7 T
Report Put in Run Learn Make autonomous
observations equations simulations from data discoveries

The fifth era of science: Artificial scientifica intelligence. Throughout history, science has evolved through
distinct eras: empirical, theoretical, computational, and data-driven. Today, it is entering the fifth era: artificial
scientific intelligence. Figure credit: Nina Miolane, Haewon Jeong, and Yao Qin, University of California,

Santa Barbara.

Classical Solvers vs Scientific ML

Model-first

(Classical solvers)

0 Transparent: you can
see why it works

Physics built-in from
the start

ﬁ Slower per run, but
predictable

No training data needed

error estimates

Q High trust: proofs &
\

v

More physics mmm

Data+Model
(Scientific ML)

Q Often a black box —
needs explainers

- Physics can be added
(PINNSs, operators)

ﬁ Very fast after training

i Learns from data
(needs examples)

@ Trust is active research
(UQ, robustness)

More data

Importance of PDEs

Hydrogen Wave Function

o) - T

B0
s
-

(O I

J/
N

Source: The Event Horizon Telescope (2019)

Source: Wikipedia
Einstein field equations

Schrédinger equation

NOAA GFDL CM3 Climate Model

Source: Kondo and Miura, Science (2010)

Source: NOAA
Navier-Stokes equations Reaction-diffusion equation

A rapidly growing field

ICLR 2024 Workshop on
Al4DifferentialEquations in Science

Machine Learning and the Physical Sciences

gssing@ystems (\e

ENERGY

emoer 15, 2028

Synergy of Scientific and Machine Al for Science

Learning Modeling

ICML 2023 Workshop, July 28 2023, Room 320 of the Hawali Convention Center

NeurlPS 2021 ICML 2022 NeurlPS 2022 NeurlPS 2023

The Symbiosis of Deep Learning and Differential Equations (DLDE)
NeurlPS 2022 Workshop

Number of publications each year

800 -

600 -

400 A

200 ~

0 4=
2018 2019 2020 2021 2022 2023

physics-informed neural networks

scientific machine learning / physics-informed ML / Al for science
operator learning / neural operators

differentiable physics / neural differential equations

Source: Scopus keyword search (Feb 2024)

Ways to incorporate scientific principles into machine learning

Loss function Architecture Hybrid approaches

Data
loss

A 4

Physics
loss
Example: Example: Example:
Physics-informed neural networks Encoding symmetries / conservation laws Neural differential equations
(add governing equations to loss (e.g. energy conservation, rotational (incorporating neural networks into PDE

function) invariance) models)

Can physics-informed neural networks (PINNs) beat finite difference / finite

element methods?

Can physics-informed neural networks beat the
finite element method? 3

Tamara G Grossmann 2, Urszula Julia Komorowska, Jonas Latz,

Carola-Bibiane Schénlieb

IMA Journal of Applied Mathematics, Volume 89, Issue 1, January 2024, Pages 143-174,
https://doi.org/10.1093/imamat/hxae011
Published: 23 May 2024 Article history v

7. Discussion and conclusions

After having investigated each of the PDEs on its own, let us now discuss and draw
conclusions from the results as a whole. Considering the solution time and accuracy,
PINNSs are not able to beat FEM in our study. In all the examples that we have studied,
the FEM solutions were faster at the same or at a higher accuracy.

PINN-related publications by year (Scopus)

1500 1
12501
1000 A
7501
500 1
2501
04

20‘19 20‘20 2(;21 20‘22 20‘23 20‘24

Solving inverse problems in physics by optimizing a
discrete loss: Fast and accurate learning without
neural networks 3

Petr Karnakov, Sergey Litvinov, Petros Koumoutsakos ™ Author Notes

PNAS Nexus, Volume 3, Issue 1, January 2024, pgae005,
https://doi.org/10.1093/pnasnexus/pgae005
Published: 11 January 2024 Article history v

Conclusion

We introduce the ODIL framework for solving inverse problems for PDEs by casting
their discretization as an optimization problem and applying optimization techniques
that are widely available in machine-learning software. The concept of casting the PDE
as is closely related to the neural network formulations proposed by (15-17) and
recently revived as PINNs. However, the fact that we use the discrete approximation of
the equations allows for ODIL to be orders of magnitude more efficient in terms of
computational cost and accuracy compared to the PINN for which complex flow

problems “remain elusive” ﬁl).

TITLE-ABS-KEY ("physics-informed neural network"
OR "physics informed neural network")

What is a physics-informed neural network?

Problem: damped harmonic

oscillator
=
U =0
Mgz TH g T

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, JCP (2018)

Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE
(1998)

What is a physics-informed neural network?

Problem: damped harmonic

oscillator
||
d?u N du o
m— — u=
a2z * Har

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, JCP (2018)

Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE
(1998)

What is a physics-informed neural network?

Problem: damped harmonic
oscillator Training step: 150

Y Exact solution

w== Neural network prediction
Boundary loss training locations

. Physics loss training locations

)

L(O) = 2,(4(t = 0,0) — 1)?

Boundary loss dii 2
—= —
+ 1, (dt 0,0) 0>
Np 2
Physics loss 1 d? d R
a(t, 0) = u(t) (aka PDE residual) { + N, Z <lmdt2 tu dt + k| 6, 0)
L

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, JCP (2018)

Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE
(1998)

Scalability challenges of PINNs

Advantages of PINNs Limitations of PINNs
* Mesh-free * Computational cost often high (especially
* Can solve forward and inverse problems, and for forward-only problems)
seamlessly incorporate observational data * Can be hard to optimise
e Mostly unsupervised * Challenging to scale to high-frequency,
e Can perform well for high-dimensional PDEs multi-scale problems

Training step: 150

Exact solution

Neural network prediction
Training data

Physics loss training locations

e e e T

Scaling PINNs to high frequency / multiscale problems

Training step 0

1.0 Exact solution
e PINN
0.5 4
0.0
_0.5 -
—1.0 - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

t

Problem: PINNs struggle to solve high-frequency /
multiscale problems

Damped harmonic
oscillator

Scaling PINNs to high frequency / multiscale problems

Training step 0

1.0 7 Exact solution
e PINN -
Spectral bias:
0.5
NNs tend to converge much slower on high frequencies
0.0 4 .
o than on low frequencies
_0.5 -
Rahaman, N., et al, On the spectral bias of neural networks. 36th International Conference on
Machine Learning, ICML (2019)
—1.0 - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Problem: PINNs struggle to solve high-frequency /
multiscale problems

Damped harmonic
oscillator

Scaling PINNs to high frequency / multiscale problems

Training step 0

1.0 A Exact solution

e PINN
0.5

0.0

_0.5 -

_1.0 -

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
t

Problem: PINNs struggle to solve high-frequency /
multiscale problems

Damped harmonic
oscillator

As higher frequencies are added:

More collocation points required
Larger neural network required
Spectral bias slows convergence

Scaling PINNs to high frequency / multiscale problems

Training step 0

1.0

wes PINN
0.5 1

0.0 A

Exact solution

_0.5 -

_1.0 -

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

t

Problem: PINNs struggle to solve high-frequency /
multiscale problems

Damped harmonic
oscillator

As higher frequencies are added:

« More collocation points required (< w%)
« Larger neural network required (< f(w))
« Spectral bias slows convergence (x s(w))

— Empirically, cost of training often

~ O0(w?f(w)s(w))

c.f. FD simulation, where cost of simulation
can scale like ~0(w%)

Scaling to more complex problems

It is often challenging to scale
traditional scientific algorithms to:

* More complex phenomena
(multi-scale, multi-physics)

» Large domains / higher
frequency solutions

Incorporate real, noisy and
sparse data

How do PINNSs cope in this setting?

Majority of PINN research focuses on toy/simplified problems,
as proof-of-principle studies

Spectral bias issue

-4 -4 -4
6 -6 6
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
(a) Iteration 100 (b) Iteration 1000 (¢) Iteration 10000 (d) Iteration 80000
1.0
70000
0.8
NNs prioritise learning lower frequency functions first S
2 50000 06
Under certain assumptions can be proved via neural tangent < 40000
kernel theory € 30000 04
20000
0.2
10000
Rahaman, N., et al, On the spectral bias of neural networks. 36th International
00

Conference on Machine Learning, ICML (2019) 0 S 10 15 20 25 30 35 40 45 50
Frequency [Hz)

This behaviour can limit the model’s ability to scale effectively, especially when the goal is
to approximate complex scientific data with both large-scale and fine-scale dynamics.

1.0

Divide and conquer approaches tackle spectral bias

Partition of Unity Networks (POUNets) offer several mechanisms to mitigate
spectral bias, especially in the context of scaling SciML models.

*Partitioning the domain into smaller regions,
*Allowing localized learning of high-frequency features.
*Leveraging multiscale representations, and

*Ensuring smooth transitions across regions

PINNs + domain decomposition

= 0.0

—1.0

Jagtap, A,, et al., Extended physics-informed neural networks (XPINNs): A
generalized space-time domain decomposition based deep learning
framework for nonlinear partial differential equations. Communications
in Computational Physics (2020)

Idea:

Take a “divide-and-conquer” strategy to model more
complex problems:

1. Divide modelling domain into many smaller
subdomains

2. Use a separate neural network in each subdomain to
model the solution

Hypothesis:

The resulting (coupled) local optimization problems are
easier to solve than a single global problem

Finite basis PINNs (FBPINNs)

/ Subdomain network: Window \
[function]
r1 — | Subdomain | — Output
normalisation NN;— | unnormalisation | X w;
2 =1 porm; |7 unnorm _/L
_ J

J
i(x,0) = z w;j(x) - unnorm o NN; o norm;(x)
j

Summation over all
subdomain networks

1

B 1 model W 4 overlapping models
w2 overlapping models

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain Idea: use Overlapping subdomains and a
decomposition approach for solving differential equations, ACM (2023) gIOba"y deﬁned SOIUtion ansatZ

FBPINNs in 1D

(a) FBPINN (individual network solutions)

1.0 A
0.5 \
S 0.0
—0.5 \/
_10 .
-6 —4 -2 0 2 4 6
X
(c) FBPINN subdomain definition and window functions
1 -
Window | '
function \
0 .
Subdomain | m—— I .]
definition ——]
Overlapping | gy — - —— ——
models T T T T T T T
-6 -4 -2 0 2 4 6

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNSs): a scalable domain
decomposition approach for solving differential equations, ACM (2023)

(b) FBPINN (full solution)

1.0 —— Exact solution
—— FBPINN
0.5 1
0.0 A
_0.5-
—1.0

J
i(x, 0) = Z w;(x) - unnorm o NN; o norm; (x)
J

Subdomain
network

Window
function

Individual subdomain
normalisation

Idea: use overlapping subdomains and a
globally defined solution ansatz

FBPINNs in 1D

(a) FBPINN (individual network solutions)

1.0 A
0.5 1
S 0.0 \
—0.5 1 \/
~1.0
B

X

(c) FBPINN subdomain definition and window functions

1 -
Window | '

function

0

Subdomain |
definition

Overlapping |
models T T T T T T

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNSs): a scalable domain
decomposition approach for solving differential equations, ACM (2023)

S

(b) FBPINN (full solution)

1.0 —— Exact solution
—— FBPINN
0.5 1
0.0 A
_0.5-
—1.0

J
i(x, 0) = Z w;(x) - unnorm o NN; o norm; (x)
J

Window Subdomain Individual subdomain
function network normalisation

Notes:
* FBPINNSs can be trained with same loss function as PINNs
* And can simply be thought of as a “custom architecture”

FBPINNSs vs PINNs

Training step O

1.0 A — Exact solution
s PINN

0.5

/\/\/\/\U/\/\MAA
o TV

—1.0 - T T T T T T

Problem: PINNs struggle to solve high-frequency /
multiscale problems

o

oscillator

Damped harmonic

Training step 0

1.01 — Exact solution
s FBPINN
0.5
_0.5 |
-1.0 - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
t

FBPINN solution

Number of subdomains: 15
Subdomain networks: 1 hidden layer, 32 hidden units

5 10714

=

(7]

-t

[}

z

j 1072 4
s FBPINN
— PINN

0 1 2 3 4

FLOPs spent training lell

FBPINNSs vs PINNSs

Training step 0 Training step 0

1.0 A 1.0 -

—= Exact solution = Exact solution
s PINN s FBPINN

0.5 4 0.5

- AAAAAAA&&&m o

—0.5 U V vy ~0.5 -

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

As higher frequencies are added:

« More collocation points required (< w®)
» Larger neural network required (x f(w))
» Spectral bias slows convergence (« s(w))

= Empirically, cost of training often ~ 0(wf(w)s(w))

FBPINNSs vs PINNs

Training step O

1.0 1 Exact solution
e PINN
0.5
0.0
_0.5 -
—1.0 - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

As higher frequencies are added:

+ More collocation points required (< w?)

» Larger neural network required (« f(w))

» Spectral bias slows convergence («x s(w))

= Empirically, cost of training often ~ 0(w?®f(w)s(w))

Training step O

1.0 1 Exact solution
wes FBPINN
0.5
u
0.0 1
_0.5 -
—1.0 - T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

As higher frequencies are added:

+ More collocation points required (o< w?)

» Same size network can be used in each subdomain
* Domain decomposition alleviates spectral bias

= Empirically, cost of training can be closer to ~ 0(w%)

Multi-scale simulation with FBPINNSs

FBPINN solution FD simulation

Number of subdomains: 60 x 60 x 60 =216,000
Total number of trainable parameters: 9 M

Multi-scale simulation with FBPINNSs

FBPINN solution FD simulation

Training time: ~2 hrs on GPU (with Number of subdomains: 60 x 60 x 60 =216,000 FD simulation time: ~5 mins on CPU!
optimised code) Total number of trainable parameters: 9 M

1.0 A

0.5 A

0.0 A

_0.5 4

_1.0 o

Why are FBPINNs still slow?

Training step 0

Exact solution
messs FBPINN

W saTiat

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

As higher frequencies are added:

« More collocation points required (o w?)

« Same size network can be used in each
subdomain

« Domain decomposition alleviates spectral
bias

= Empirically, cost of training can be closer
to ~ O(w?)

BUT gradient descent is a slow optimiser
(non-convex loss requires lots of iterations +

backprop introduces lots of overhead)

..can we avoid gradient descent altogether?

Idea — Extreme learning machines

Neural network

All weights trainable

it = NN(x,0)

i(x,0,a) = u(x)

Extreme learning machine

Hidden weights are randomly initialised and fixed
Only last layer trainable

K

=) a0y

k

Huang, G. Bin, Zhu, Q. Y., & Siew, C. K. Extreme leaming machine:
Theory and applications. Neurocomputing. (2006).

FBPINN

(a) FBPINN (individual network solutions)

1.0

J
i(x,0) = ij(x) NN;(x, 6)) FBPINN
J
Window Subdomain
function network

(ignoring normalization functions for simplicity)

Extreme learning machine (ELM) FBPINNs

(a) FBPINN (individual network solutions)

1.0 1

ol LN

J K
i(x,a) = z w;(x) Z ajd(x, i) ELM-FBPINN
J k

ELM in each
subdomain

J = total number of subdomains
K = number of basis functions per subdomain

Dwivedi, V., and Srinivasan, B. Physics Informed Extreme Leaming Machine (PIELM)—A rapid method for the
numerical solution of partial differential equations. Neurocomputing. (2020).

Dong, S., and Li, Z. Local extreme learning machines and domain decomposition for solving linear and nonlinear
partial differential equations. Computer Methods in Applied Mechanics and Engineering. (2021).

Extreme learning machine (ELM) FBPINNs

J K
ﬁ(X; a) = ZW](X)Zajkd)(x’ ojk) ELM-FBPINN
J k

ELM in each subdomain

J = total number of subdomains
N 2 K = number of basis functions per subdomain
+ + k|i(t;, 0) N = number of collocation points
Z <l a2 " Hae l) (ignoring boundary loss for simplicity)

Extreme learning machine (ELM) FBPINNs

)i K
[}
i(x,a) = Z w;(x) Z ajrd(x, i) ELM-FBPINN
7 K

= ELM in each subdomain

J = total number of subdomains
K = number of basis functions per subdomain
42 d 2 N = number of collocation points
u(t 0))

+ +k
dt2 “dt

b‘
Il

"
ELM-FBPINN

2

K 2
d d
j k

M=z ~[M]=

/—\/\

Extreme learning machine (ELM) FBPINNs

B] K
ax, @) = Y wi(x) Y a,¢(x,6)) ELM-FBPINN
A
ELM in each subdomain

J = total number of subdomains
g2 d 2 K = number of basis functions per subdomain
(Fre] +u— T +k u(tl, 0)) N = number of collocation points

h
Il

ma

d2

d
dtz +'udt +k ij(t)zajkd)(x ejk)

J K
Z 2 Qjk NW](t)¢(tv]k)
j k

Il
M= -Mz -Mz

d2

d
Assuming V is a linear operator, N = + +k
g P [TR T: l

Extreme learning machine (ELM) FBPINNs
J K
B (x,a) = ij(x)Za,-kd)(x, 01) ELM-FBPINN

ELM in each subdomain

J = total number of subdomains
. K = number of basis functions per subdomain
@ d N = number of collocation points
u(t- 0)

h
Il

(mogathg Tk
2
Mt u— k Z w;(t;) Z ajk$(x, 0ji)

K ‘(ij(to)qﬁ(to, 000) - Nw(te)d(to, GJK)> <a90> (0)
NW](tN)¢(tN, 900) NW](tN)¢(tN, 9]1{) a]K 0

J 2
(ZE ;. Nw; () p(t;, ,k)>
J
= [|[Ma — flI?

2

Il
D= D= s

k

M:N X JK a:JK f:N

Quadratic optimisation
This is a linear least squares problem!

L(a) = [|[Ma — f||?
The global minima is given by solving

A = b (normal equation)

Where,
A= MTW JK X JK
b=MTf

Quadratic optimisation

This is a linear least squares problem!
L(a) = |[[Ma — f||?
The global minima is given by solving

Aa " =b (normal equation)
Where,

A=MTM JK xJK

b=MTf |k

* By usinga linear combination of fixed basis functions, we have
turned the loss function from non-convex to convex (quadratic)

* |.e., we can now use linear solvers to train ELM-FBPINNSs, instead
of gradient descent! D

Example — 1D harmonic oscillator

1.0 A Exact solution 100
— ELM-FBPINN o
0.5 A |
5 10-1
g 10 E
w 997 s]
=]
—0.5 - 8 102 E
‘, — : ® PINN
—1.01 103 - ° ® FBPINN
] ELM-PINN
T ‘ T T T ‘ T T
0.0 0.2 0.4 0.6 0.8 1.0 0 5 10 15 20 25
t Time (s)
FBPINN / ELM-FBPINN: PINN / FBPINN: Adam optimiser, 0.001 learning rate

20 subdomains ELM-FBPINN: Conjugate gradient linear solver

1 hidden layer, 8 hidden units (=basis functions)
Tanh activation

PINN:
2 hidden layers, 64 hidden units

Tanh activation Anderson, S, Dolean, V., Moseley, B., & Pestana, J. ELM-FBPINN: efficient finite-basis
physics-informed neural networks. ArXiv. (2024).

Example — 2D multi-scale LaPIac

n=1 n=3 n=4 n=>5 n==6
Exact solution Exact solution Exact solution Exact solution Exact solution Exact solution
Multi-scale problem: , ; ; ’
n
2 2 i)? cin(i (i
V2u(xy, x;) = - (2im)” sin(2imx,) sin(2imx,)
7
FBPINN FBPINN ® FBPINN ® FBPINN ® FBPINN ® FBPINN
[1, 2] [1,2, 4] (1,2, 4,8] [1,2, 4,8, 16] [1,2,4,8,16,32] [1,2, 4,8, 16, 32, 64]
(10, 10) (20, 20) (40, 40) (80, 80) (160, 160) (320, 320)
Multilevel domain decomposition:
) Q |
I 1
R
level 1 | of" ELM-FBPINN ELM-FBPINN © ELM-FBPINN @ ELM-FBPINN @ ELM-FBPINN @ ELM-FBPINN
ety [1, 2] [1,2, 4] [1,2, 4,8] (1,2, 4,8, 16] [1,2,4,8,16,32] [1,2, 4,8, 16, 32, 64]

(40, 40)

(80, 80) (160, 160) (320, 320)

P L ’

level 2 | o ! ' o (10, 10) (20R0)
I e e e e e e m e mmm— e —— L

QgS) 0(23) QSS) Q‘(‘S)

=== - “rT- -rT- “ro- “ro- “rT- “ra-----

level 4 | O | 0 g Q“” i Qg"’ i Qf,“’ i Qg4> i Qg“’ i Q‘,“’ Lol
[P I_|____J_'____J_'____J_'____J_'____J_'____J_' ______

Dolean, V., et al, Multilevel domain decomposition-based architectures

for physics-informed neural networks, CMAME (2024)

1x1 +2x2 +4x4 = 21 subdomains 5,461 subdomains

Normalised L1 test loss

Example — 2D multi-scale LaPIac

100 4

10-1 A

1072 4

1073 4

@ FBPINN
@ ELM-FBPINN

v bt Y

?.

100 10! 102
Total time elapsed (s)

n=1 n=3 n=4 n=>5 n==6
Exact solution Exact solution Exact solution Exact solution Exact solution Exact solution
FBPINN FBPINN ® FBPINN ® FBPINN ® FBPINN ® FBPINN
(1,2, 4] (1,2, 4, 8] (1, 2 4 8, 161 [1,2,4,8,16,32] [1,2, 4,8, 16, 32, 64]
(20, 20) (40, 40) 0, 80) (160, 160) (320, 320)
ELM-FBPINN ELM-FBPINN © ELM-FBPINN @ ELM-FBPINN @ ELM-FBPINN @ ELM-FBPINN
[1, 2] [1, 2, 4] [1,2,4,8] [1, 2,4, 8, 16] [1,2,4,8,16,32] [1,2, 4,8, 16, 32, 64]
(10, 10) (20.R0) (40, 40)

(80, 80) (160, 160) (320, 320)

1x1 +2x2 +4x4 = 21 subdomains 5,461 subdomains

1.0 1

0.5 1

¢ 0.0 1
—0.5 A1

—1.0 A1

Challenges with ELM-FBPINNSs

Challenge 1: Linear dependence between basis functions = poorly conditioned matrix Aa" = b

| A7 |

0.0 0.2 0.4 0.6 0.8 1.0
t

Conjugate gradient solver requires ~5000 iterations

7 | —
1079 g ELM-FBPINN (tanh basis), n(A) — 9¢18 >

104 1 /—
10" 4

A(A)] 10-2

- /]
1075 A ~
10_8 4 4/

10711 + b
(I) 2I5 5I0 7I5 l(I)O 12IS 1;30 1%5
Index (sorted)
NW](to)¢(t0, 000) NW](to)(p(to, GJK)
M = E . E)
NW](tN)d)(tNﬁ 000) NW](tN)¢(tN, BJK)

A=M"M

Challenges with ELM-FBPINNSs

Challenge 1: Linear dependence between basis functions = poorly conditioned matrix Aa” = b

1.0 A
0.5 1
¢ 0.0 A
—0.5 A
-1.0 1
OjO 0j2 Oj4 0.I6 Oj8 1j0
t

Possible solution: use principal component analysis /
preconditioning, see:
Shang, Y., Heinlein, A., Mishra, S., & Wang, F. Overlapping Schwarz

Preconditioners for Randomized Neural Networks with Domain
Decomposition. ArXiv. (2024).

7 | —
1079 g ELM-FBPINN (tanh basis), n(A) — 9¢18 >

104 1 /—

101 .

" 4
AA)] 10 g
10-5 A
1078 4/

10711 + b
(I) 2I5 5I0 7I5 lCI)O 12IS 1;30 1%5
Index (sorted)
NW](t0)¢(t0, 000) NW](t0)¢)(t0, GJK)
M = E . E)
NWJ(tN)¢(tN, 000) NW](tN)¢(tN, 0]1()
A=M"M

Challenges with ELM-FBPINNSs

Challenge 2: Big matrix! Aa”=b [1,‘2,E4|1',|\4§,F?2N3'\2', 64]
(320, 520) =5461, K=6
A:JK X JK b:JK 8, J = 5,461, =

A:32,766 X 32,766 = 1 billion elements!

10° 4 ® FBPINN
@ ELM-FBPINN

1071 4 +
%]
%]
ke
I
8 *
—~
-
T 1072 4 *
w
T
£
o
=2

10—3 4

10° 10! 102

Total time elapsed (s)

Challenges with ELM-FBPINNSs

Challenge 2: Bigmatrix! Aa"=b

Solution: exploit sparsity

Row Index

200

400 -

600

800 -

1000 +

1200 4

200 400
n

A:JK x JK b:JK

A

600 800
. .

@ ELM-FBPINN
(1,2, 4, 8, 16, 32, 64]
(320, 320)

5 #

J =5,461, K=6
A:32,766 X 32,766 = 1 billion elements!

1000 1200
. n

Use sparse solver which only uses matvec products

scipy.sparse. linalg.

cg

cg(A, b, x8=None, *, rtol=le-05, atol=0.0, maxiter=None, M=None,

callback=None) [source]

Use Conjugate Gradient iteration to solve Ax = b.

Parameters:
A : {sparse array, ndarray, LinearOperator}
The real or complex N-by-N matrix of the linear system. A must represent a
hermitian, positive definite matrix. Alternatively, A can be a linear operator which can

produce Ax using, e.g., scipy.sparse.linalg.LinearOperator .

: !
Column Index

Can physics-informed neural networks (PINNs) beat finite
difference / finite element methods?

Can physics-informed neural networks beat the
finite element method? 3

Tamara G Grossmann &, Urszula Julia Komorowska, Jonas Latz,
Carola-Bibiane Schonlieb

IMA Journal of Applied Mathematics, Volume 89, Issue 1, January 2024, Pages 143-174,
https://doi.org/10.1093/imamat/hxae011
Published: 23 May 2024 Article history v

7. Discussion and conclusions

After having investigated each of the PDEs on its own, let us now discuss and draw
conclusions from the results as a whole. Considering the solution time and accuracy,
PINNS are not able to beat FEM in our study. In all the examples that we have studied,

the FEM solutions were faster at the same or at a higher accuracy.

Solving inverse problems in physics by optimizing a
discrete loss: Fast and accurate learning without
neural networks 3

Petr Karnakov, Sergey Litvinov, Petros Koumoutsakos ™ Author Notes

PNAS Nexus, Volume 3, Issue 1, January 2024, pgae005,
https://doi.org/10.1093/pnasnexus/pgae005
Published: 11 January 2024 Article history v

Conclusion

We introduce the ODIL framework for solving inverse problems for PDEs by casting
their discretization as an optimization problem and applying optimization techniques
that are widely available in machine-learning software. The concept of casting the PDE
as is closely related to the neural network formulations proposed by (15-17) and
recently revived as PINNs. However, the fact that we use the discrete approximation of
the equations allows for ODIL to be orders of magnitude more efficient in terms of

computational cost and accuracy compared to the PINN for which complex flow
problems “remain elusive” (71).

Are PINNs becoming FEM?

ELM-FBPINN Finite element method
d2u+ du+k d?u N du+k
™ TR D7 ™z TR e
] K J
2@ = Y WOy @60 a0, =) (1)
J k Jj
z 2 d 2
L(a) = Z ([— kl a(t;, a) — f(t1)> J- o; (t)l 12 + u + kl a(t, a)dt = f ¢i(t) fdt Vi=0,..,J
= (- mL +uD + kM)a =
— IMa — fII2 :
=>Aa—-b=0
A:JK X JK b:JK LD M:] x| b:]

(sparse & symmetric) (sparse & symmetric)

Can we do better i.e. how about preconditioning?

Idea: filter the redundant features in each Global matrix M
block then precondition directly the least Block-sparse structure from overlapping subdomains

squares problem
Sparsity is preserved.

Y

M MS™ [Local RRQR filtering]

0 50 100 150 . 0 510 190 1?0 Remove redundant features in each block M;;
0 1 | 1

50 i Y

Assemble right preconditioner S~

' From filtered triangular factors R;
100 A
150 - o —t
Preconditioned LSQR solve
: : ! Solve miny [MS™'y — h|, efficiently

JW van Beek \% Dolean B I\/Ioseley, CI\/IAI\/IE 2025

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZzHAiHkAAAAJ&sortby=pubdate&citation_for_view=ZzHAiHkAAAAJ:kO05sadLmrgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZzHAiHkAAAAJ&sortby=pubdate&citation_for_view=ZzHAiHkAAAAJ:kO05sadLmrgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZzHAiHkAAAAJ&sortby=pubdate&citation_for_view=ZzHAiHkAAAAJ:kO05sadLmrgC

Takeaways

-() From optimization to linear algebra: reframing learning as a numerical linear algebra problem
enables new algorithmic insights and requires new methodologies.

-{5} Scalability & robustness: extending to muitilevel and overlapping decompositions could
improve performance in large-scale or high-dimensional settings.

4> Acceleration & theory: GPU implementations and convergence-rate analysis are key next
steps.

-[2] Beyond linear problems: the framework naturally extends to nonlinear PDEs via Newton-type
iterations.

A change in perspective

Classical solver Neural network

B 1 o

=
/| Proof m

perspective

Error estimate

<

Hybrid future

The integration of machine learning (Keplerian paradigm) and more general
artificial intelligence technologies with physical modelling based on first principles (Newtonian paradigm)
will impact scientific computing in engineering in fundamental ways. (Stefan Kurz, ETH Zurich)

synthetic real-time

data decision ‘/
— —_—
HPC ML surrogate real-time
decision

	Slide 1: From Neural Networks to Solvers: Scalable Physics-Informed Learning for PDEs
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Scientific Machine Learning (part of Artificial Scientific Intelligence: AI4Science – Science4AI)
	Slide 7: Classical Solvers vs Scientific ML
	Slide 8: Importance of PDEs
	Slide 9
	Slide 10
	Slide 11: Can physics-informed neural networks (PINNs) beat finite difference / finite element methods?
	Slide 12: What is a physics-informed neural network?
	Slide 13: What is a physics-informed neural network?
	Slide 14: What is a physics-informed neural network?
	Slide 15: Scalability challenges of PINNs
	Slide 16: Scaling PINNs to high frequency / multiscale problems
	Slide 17: Scaling PINNs to high frequency / multiscale problems
	Slide 18: Scaling PINNs to high frequency / multiscale problems
	Slide 19: Scaling PINNs to high frequency / multiscale problems
	Slide 20
	Slide 21
	Slide 22: Divide and conquer approaches tackle spectral bias
	Slide 23: PINNs + domain decomposition
	Slide 24: Finite basis PINNs (FBPINNs)
	Slide 25: FBPINNs in 1D
	Slide 26: FBPINNs in 1D
	Slide 27: FBPINNs vs PINNs
	Slide 28: FBPINNs vs PINNs
	Slide 29: FBPINNs vs PINNs
	Slide 30: Multi-scale simulation with FBPINNs
	Slide 31: Multi-scale simulation with FBPINNs
	Slide 32: Why are FBPINNs still slow?
	Slide 33: Idea – Extreme learning machines
	Slide 34: FBPINN
	Slide 35: Extreme learning machine (ELM) FBPINNs
	Slide 36: Extreme learning machine (ELM) FBPINNs
	Slide 37: Extreme learning machine (ELM) FBPINNs
	Slide 38: Extreme learning machine (ELM) FBPINNs
	Slide 39: Extreme learning machine (ELM) FBPINNs
	Slide 40: Quadratic optimisation
	Slide 41: Quadratic optimisation
	Slide 42: Example – 1D harmonic oscillator
	Slide 43: Example – 2D multi-scale Laplace
	Slide 44: Example – 2D multi-scale Laplace
	Slide 45: Challenges with ELM-FBPINNs
	Slide 46: Challenges with ELM-FBPINNs
	Slide 47: Challenges with ELM-FBPINNs
	Slide 48: Challenges with ELM-FBPINNs
	Slide 49: Can physics-informed neural networks (PINNs) beat finite difference / finite element methods?
	Slide 50: Are PINNs becoming FEM?
	Slide 51: Can we do better i.e. how about preconditioning?
	Slide 52: Takeaways
	Slide 53: A change in perspective
	Slide 54: Hybrid future

