
From Neural Networks to Solvers: Scalable Physics-
Informed Learning for PDEs

VICTORITA DOLEAN
EINDHOVEN UNIVERSITY OF TECHNOLOGY

In collaboration with: S. Anderson, JW van
Beek, A. Heinlein, B. Moseley, J. Pestana

Scientific Machine Learning
(part of Artificial Scientific Intelligence: AI4Science – Science4AI)

Classical Solvers vs Scientific ML

Importance of PDEs

Reaction-diffusion equation
Source: Kondo and Miura, Science (2010)

Einstein field equations

Source: The Event Horizon Telescope (2019)

Source: NOAA

Navier-Stokes equations

Schrödinger equation
Source: Wikipedia

Can physics-informed neural networks (PINNs) beat finite difference / finite

element methods?

TITLE-ABS-KEY ("physics-informed neural network"
OR "physics informed neural network")

What is a physics-informed neural network?

𝑚
𝑑2𝑢

𝑑𝑡2
+ 𝜇

𝑑𝑢

𝑑𝑡
+ 𝑘𝑢 = 0

Problem: damped harmonic
oscillator

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, JCP (2018)

Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE
(1998)

What is a physics-informed neural network?

𝑚
𝑑2𝑢

𝑑𝑡2
+ 𝜇

𝑑𝑢

𝑑𝑡
+ 𝑘𝑢 = 0

Problem: damped harmonic
oscillator

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, JCP (2018)

Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE
(1998)

𝑡 ො𝑢 𝑡, 𝜽 ≈ 𝑢(𝑡)

What is a physics-informed neural network?

𝑚
𝑑2𝑢

𝑑𝑡2
+ 𝜇

𝑑𝑢

𝑑𝑡
+ 𝑘𝑢 = 0

Problem: damped harmonic
oscillator

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, JCP (2018)

Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE
(1998)

𝐿 𝜃 = 𝜆1 ො𝑢 𝑡 = 0, 𝜽 − 1 2

+ 𝜆2
𝑑ො𝑢

𝑑𝑡
𝑡 = 0, 𝜽 − 0

2

+
1

𝑁𝑝
෍

𝑖

𝑁𝑝

𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ො𝑢 𝑡𝑖 , 𝜽

2
Physics loss

(aka PDE residual)

Boundary loss

𝑡 ො𝑢 𝑡, 𝜽 ≈ 𝑢(𝑡)

Scalability challenges of PINNs

Advantages of PINNs

• Mesh-free
• Can solve forward and inverse problems, and

seamlessly incorporate observational data
• Mostly unsupervised
• Can perform well for high-dimensional PDEs

Limitations of PINNs

• Computational cost often high (especially
for forward-only problems)

• Can be hard to optimise
• Challenging to scale to high-frequency,

multi-scale problems

Scaling PINNs to high frequency / multiscale problems

Damped harmonic
oscillator

Problem: PINNs struggle to solve high-frequency /
multiscale problems

Scaling PINNs to high frequency / multiscale problems

Problem: PINNs struggle to solve high-frequency /
multiscale problems

Damped harmonic
oscillator

Spectral bias:

NNs tend to converge much slower on high frequencies
than on low frequencies

Rahaman, N., et al, On the spectral bias of neural networks. 36th International Conference on
Machine Learning, ICML (2019)

Scaling PINNs to high frequency / multiscale problems

Damped harmonic
oscillator

As higher frequencies are added:

• More collocation points required

• Larger neural network required

• Spectral bias slows convergence

Problem: PINNs struggle to solve high-frequency /
multiscale problems

Scaling PINNs to high frequency / multiscale problems

Damped harmonic
oscillator

As higher frequencies are added:

• More collocation points required (∝ 𝜔𝑑)

• Larger neural network required (∝ 𝑓(𝜔))
• Spectral bias slows convergence (∝ 𝑠(𝜔))

 Empirically, cost of training often

~ 𝒪(𝜔𝑑𝑓 𝜔 𝑠 𝜔)

c.f. FD simulation, where cost of simulation

can scale like ~𝒪(𝜔𝑑)

Problem: PINNs struggle to solve high-frequency /
multiscale problems

This behaviour can limit the model’s ability to scale effectively, especially when the goal is
to approximate complex scientific data with both large-scale and fine-scale dynamics.

Divide and conquer approaches tackle spectral bias

Partition of Unity Networks (POUNets) offer several mechanisms to mitigate
spectral bias, especially in the context of scaling SciML models.

•Partitioning the domain into smaller regions,
•Allowing localized learning of high-frequency features.
•Leveraging multiscale representations, and
•Ensuring smooth transitions across regions

PINNs + domain decomposition

Idea:

Take a “divide-and-conquer” strategy to model more
complex problems:

1. Divide modelling domain into many smaller

subdomains

2. Use a separate neural network in each subdomain to

model the solution

Hypothesis:

The resulting (coupled) local optimization problems are

easier to solve than a single global problem

Jagtap, A., et al., Extended physics-informed neural networks (XPINNs): A
generalized space-time domain decomposition based deep learning

framework for nonlinear partial differential equations. Communications
in Computational Physics (2020)

Finite basis PINNs (FBPINNs)

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain
decomposition approach for solving differential equations, ACM (2023)

Idea: use overlapping subdomains and a
globally defined solution ansatz

ො𝑢 𝑥, 𝜽 =෍

𝑗

𝐽

𝑤𝑗 𝑥 ⋅ unnorm ∘ 𝑁𝑁𝑗 ∘ norm𝑗(𝑥)

𝑗

𝑗 𝑗

FBPINNs in 1D

Window

function

Subdomain

network
Individual subdomain

normalisation

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain
decomposition approach for solving differential equations, ACM (2023)

Idea: use overlapping subdomains and a
globally defined solution ansatz

ො𝑢 𝑥, 𝜽 =෍
𝑗

𝐽

𝑤𝑗 𝑥 ⋅ unnorm ∘ 𝑁𝑁𝑗 ∘ norm𝑗(𝑥)

FBPINNs in 1D

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain
decomposition approach for solving differential equations, ACM (2023)

Notes:
• FBPINNs can be trained with same loss function as PINNs
• And can simply be thought of as a “custom architecture”

Window

function

Subdomain

network
Individual subdomain

normalisation

ො𝑢 𝑥, 𝜽 =෍
𝑗

𝐽

𝑤𝑗 𝑥 ⋅ unnorm ∘ 𝑁𝑁𝑗 ∘ norm𝑗(𝑥)

FBPINNs vs PINNs

FBPINN solution

Damped harmonic
oscillator

Number of subdomains: 15
Subdomain networks: 1 hidden layer, 32 hidden units

Problem: PINNs struggle to solve high-frequency /
multiscale problems

FBPINNs vs PINNs

As higher frequencies are added:

• More collocation points required (∝ 𝜔𝑑)
• Larger neural network required (∝ 𝑓(𝜔))
• Spectral bias slows convergence (∝ 𝑠(𝜔))

 Empirically, cost of training often ~𝒪(𝜔𝑑𝑓 𝜔 𝑠 𝜔)

FBPINNs vs PINNs

As higher frequencies are added:

• More collocation points required (∝ 𝜔𝑑)

• Same size network can be used in each subdomain

• Domain decomposition alleviates spectral bias

 Empirically, cost of training can be closer to ~ 𝒪(𝜔𝑑)

As higher frequencies are added:

• More collocation points required (∝ 𝜔𝑑)

• Larger neural network required (∝ 𝑓(𝜔))
• Spectral bias slows convergence (∝ 𝑠(𝜔))

 Empirically, cost of training often ~ 𝒪(𝜔𝑑𝑓 𝜔 𝑠 𝜔)

Multi-scale simulation with FBPINNs

Number of subdomains: 60 x 60 x 60 = 216,000
Total number of trainable parameters: 9 M

Multi-scale simulation with FBPINNs

Number of subdomains: 60 x 60 x 60 = 216,000
Total number of trainable parameters: 9 M

FD simulation time: ~5 mins on CPU!Training time: ~2 hrs on GPU (with
optimised code)

Why are FBPINNs still slow?
As higher frequencies are added:

• More collocation points required (∝ 𝜔𝑑)

• Same size network can be used in each

subdomain

• Domain decomposition alleviates spectral

bias

 Empirically, cost of training can be closer

to ~ 𝒪(𝜔𝑑)

BUT gradient descent is a slow optimiser

(non-convex loss requires lots of iterations +

backprop introduces lots of overhead)

..can we avoid gradient descent altogether?

Idea – Extreme learning machines

𝑥 ො𝑢 𝑥, 𝜽 ≈ 𝑢(𝑥)

Neural network

𝑡 ො𝑢 𝑥, 𝜽, 𝒂 ≈ 𝑢(𝑥)

Extreme learning machine

All weights trainable Hidden weights are randomly initialised and fixed

Only last layer trainable

Huang, G. Bin, Zhu, Q. Y., & Siew, C. K. Extreme learning machine:
Theory and applications. Neurocomputing. (2006).

ො𝑢 =෍

𝑘

𝐾

𝑎𝑘𝜙(𝑥, 𝜽𝑘)ො𝑢 = 𝑁𝑁(𝑥, 𝜽)

𝑎1
𝑎2

𝑎3

𝑎4

𝑎5

FBPINN

𝑗 = 1 2 3 4 5

ො𝑢 𝑥, 𝜽 =෍

𝑗

𝐽

𝑤𝑗 𝑥 𝑁𝑁𝑗(𝑥, 𝜽𝑗)

Window
function

Subdomain

network

FBPINN

(ignoring normalization functions for simplicity)

Extreme learning machine (ELM) FBPINNs

Dwivedi, V., and Srinivasan, B. Physics Informed Extreme Learning Machine (PIELM)–A rapid method for the
numerical solution of partial differential equations. Neurocomputing. (2020).

Dong, S., and Li, Z. Local extreme learning machines and domain decomposition for solving linear and nonlinear
partial differential equations. Computer Methods in Applied Mechanics and Engineering. (2021).

ELM in each
subdomain

ELM-FBPINNො𝑢 𝑥, 𝒂 =෍

𝑗

𝐽

𝑤𝑗 𝑥 ෍

𝑘

𝐾

𝑎𝑗𝑘𝜙(𝑥, 𝜽𝑗𝑘)

𝑗 = 1 2 3 4 5

𝐽 = total number of subdomains
𝐾 = number of basis functions per subdomain

𝐿 =෍

𝑖

𝑁

𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ො𝑢 𝑡𝑖 , 𝜽

2

=෍

𝑖

𝑁

𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ෍

𝑗

𝐽

𝑤𝑗 𝑡𝑖 ෍

𝑘

𝐾

𝑎𝑗𝑘𝜙(𝑥, 𝜽𝑗𝑘)

2

=෍

𝑖

𝑁

෍

𝑗

𝐽

෍

𝑘

𝐾

𝑎𝑗𝑘𝒩𝑤𝑗 𝑡𝑖 𝜙 𝑡𝑖 , 𝜽𝑗𝑘

2

=

𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽00 … 𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽𝐽𝐾
⋮ ⋱ ⋮

𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽00 … 𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽𝐽𝐾

𝑎00
⋮
𝑎𝐽𝐾

−
0
⋮
0

2

Extreme learning machine (ELM) FBPINNs

ELM in each subdomain

ELM-FBPINN

(ignoring boundary loss for simplicity)

ො𝑢 𝑥, 𝒂 =෍

𝑗

𝐽

𝑤𝑗 𝑥 ෍

𝑘

𝐾

𝑎𝑗𝑘𝜙(𝑥, 𝜽𝑗𝑘)

𝐽 = total number of subdomains
𝐾 = number of basis functions per subdomain
𝑁 = number of collocation points

𝐿 =෍

𝑖

𝑁

𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ො𝑢 𝑡𝑖 , 𝜽

2

=෍

𝑖

𝑁

𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ෍

𝑗

𝐽

𝑤𝑗 𝑡𝑖 ෍

𝑘

𝐾

𝑎𝑗𝑘𝜙(𝑥, 𝜽𝑗𝑘)

2

=෍

𝑖

𝑁

෍

𝑗

𝐽

෍

𝑘

𝐾

𝑎𝑗𝑘𝒩𝑤𝑗 𝑡𝑖 𝜙 𝑡𝑖 , 𝜽𝑗𝑘

2

=

𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽00 … 𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽𝐽𝐾
⋮ ⋱ ⋮

𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽00 … 𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽𝐽𝐾

𝑎00
⋮
𝑎𝐽𝐾

−
0
⋮
0

2

Extreme learning machine (ELM) FBPINNs

ELM-FBPINN

ELM in each subdomain

ELM-FBPINNො𝑢 𝑥, 𝒂 =෍

𝑗

𝐽

𝑤𝑗 𝑥 ෍

𝑘

𝐾

𝑎𝑗𝑘𝜙(𝑥, 𝜽𝑗𝑘)

𝐽 = total number of subdomains
𝐾 = number of basis functions per subdomain
𝑁 = number of collocation points

𝐿 =෍

𝑖

𝑁

𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ො𝑢 𝑡𝑖 , 𝜽

2

=෍

𝑖

𝑁

𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ෍

𝑗

𝐽

𝑤𝑗 𝑡𝑖 ෍

𝑘

𝐾

𝑎𝑗𝑘𝜙(𝑥, 𝜽𝑗𝑘)

2

=෍

𝑖

𝑁

෍

𝑗

𝐽

෍

𝑘

𝐾

𝑎𝑗𝑘𝒩𝑤𝑗 𝑡𝑖 𝜙 𝑡𝑖 , 𝜽𝑗𝑘

2

=

𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽00 … 𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽𝐽𝐾
⋮ ⋱ ⋮

𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽00 … 𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽𝐽𝐾

𝑎00
⋮
𝑎𝐽𝐾

−
0
⋮
0

2

Extreme learning machine (ELM) FBPINNs

, 𝒩 = 𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘Assuming 𝒩 is a linear operator

ELM in each subdomain

ELM-FBPINN
ො𝑢 𝑥, 𝒂 =෍

𝑗

𝐽

𝑤𝑗 𝑥 ෍

𝑘

𝐾

𝑎𝑗𝑘𝜙(𝑥, 𝜽𝑗𝑘)

𝐽 = total number of subdomains
𝐾 = number of basis functions per subdomain
𝑁 = number of collocation points

𝐿 =෍

𝑖

𝑁

𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ො𝑢 𝑡𝑖 , 𝜽

2

=෍

𝑖

𝑁

𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ෍

𝑗

𝐽

𝑤𝑗 𝑡𝑖 ෍

𝑘

𝐾

𝑎𝑗𝑘𝜙(𝑥, 𝜽𝑗𝑘)

2

=෍

𝑖

𝑁

෍

𝑗

𝐽

෍

𝑘

𝐾

𝑎𝑗𝑘𝒩𝑤𝑗 𝑡𝑖 𝜙 𝑡𝑖 , 𝜽𝑗𝑘

2

=

𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽00 … 𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽𝐽𝐾
⋮ ⋱ ⋮

𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽00 … 𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽𝐽𝐾

𝑎00
⋮
𝑎𝐽𝐾

−
0
⋮
0

2

Extreme learning machine (ELM) FBPINNs

≡ 𝑀𝒂 − 𝒇 2

𝑀:𝑁 × 𝐽𝐾 𝒇:𝑁𝒂: 𝐽𝐾

ELM in each subdomain

ELM-FBPINNො𝑢 𝑥, 𝒂 =෍

𝑗

𝐽

𝑤𝑗 𝑥 ෍

𝑘

𝐾

𝑎𝑗𝑘𝜙(𝑥, 𝜽𝑗𝑘)

𝐽 = total number of subdomains
𝐾 = number of basis functions per subdomain
𝑁 = number of collocation points

This is a linear least squares problem!

𝐿 𝒂 = 𝑀𝒂 − 𝒇 2

The global minima is given by solving

𝐴 𝒂∗ = 𝒃
Where,

𝐴 = 𝑀𝑇𝑀
𝒃 = 𝑀𝑇𝒇

Quadratic optimisation

𝐽𝐾 × 𝐽𝐾𝐽𝐾

(normal equation)

This is a linear least squares problem!

𝐿 𝒂 = 𝑀𝒂− 𝒇 2

The global minima is given by solving

𝐴 𝒂∗ = 𝒃
Where,

𝐴 = 𝑀𝑇𝑀
𝒃 = 𝑀𝑇𝒇

Quadratic optimisation

𝐽𝐾 × 𝐽𝐾

𝐽𝐾

(normal equation)

• By using a linear combination of fixed basis functions, we have
turned the loss function from non-convex to convex (quadratic)

• I.e., we can now use linear solvers to train ELM-FBPINNs, instead
of gradient descent!

Example – 1D harmonic oscillator

FBPINN / ELM-FBPINN:

20 subdomains

1 hidden layer, 8 hidden units (=basis functions)

Tanh activation

PINN:
2 hidden layers, 64 hidden units

Tanh activation

PINN / FBPINN: Adam optimiser, 0.001 learning rate

ELM-FBPINN: Conjugate gradient linear solver

Anderson, S., Dolean, V., Moseley, B., & Pestana, J. ELM-FBPINN: efficient finite-basis
physics-informed neural networks. ArXiv. (2024).

Example – 2D multi-scale Laplace

1x1 + 2x2 + 4x4 = 21 subdomains

𝑛 = 1 𝑛 = 2 𝑛 = 4 𝑛 = 5 𝑛 = 6𝑛 = 3

Ω

level 1 Ω
(1)
1

level 2 Ω
(2)
1 Ω

(2)
2

level 3 Ω
(3)
1 Ω

(3)
2 Ω

(3)
3 Ω

(3)
4

level 4 Ω
(4)
1 Ω

(4)
2 Ω

(4)
3 Ω

(4)
4 Ω

(4)
5 Ω

(4)
6 Ω

(4)
7 Ω

(4)
8

...

Multi-scale problem:

∇2𝑢 𝑥1, 𝑥2 = −
2

𝑛
෍
𝑖

𝑛

2𝑖𝜋
2
sin 2𝑖𝜋𝑥1 sin 2𝑖𝜋𝑥2

Multilevel domain decomposition:

5,461 subdomains

Dolean, V., et al, Multilevel domain decomposition-based architectures
for physics-informed neural networks, CMAME (2024)

Example – 2D multi-scale Laplace

1x1 + 2x2 + 4x4 = 21 subdomains 5,461 subdomains

𝑛 = 1 𝑛 = 2 𝑛 = 4 𝑛 = 5 𝑛 = 6𝑛 = 3

Challenges with ELM-FBPINNs

Challenge 1: Linear dependence between basis functions ⟹ poorly conditioned matrix 𝐴 𝒂∗ = 𝒃

Conjugate gradient solver requires ~5000 iterations

𝑀 =

𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽00 … 𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽𝐽𝐾
⋮ ⋱ ⋮

𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽00 … 𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽𝐽𝐾

,

𝐴 = 𝑀𝑇𝑀

Challenges with ELM-FBPINNs

Challenge 1: Linear dependence between basis functions ⟹ poorly conditioned matrix 𝐴 𝒂∗ = 𝒃

Possible solution: use principal component analysis /

preconditioning, see:

Shang, Y., Heinlein, A., Mishra, S., & Wang, F. Overlapping Schwarz
Preconditioners for Randomized Neural Networks with Domain

Decomposition. ArXiv. (2024).

𝑀 =

𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽00 … 𝒩𝑤𝑗 𝑡0 𝜙 𝑡0, 𝜽𝐽𝐾
⋮ ⋱ ⋮

𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽00 … 𝒩𝑤𝑗 𝑡𝑁 𝜙 𝑡𝑁, 𝜽𝐽𝐾

,

𝐴 = 𝑀𝑇𝑀

Challenges with ELM-FBPINNs

Challenge 2: Big matrix! 𝐴 𝒂∗ = 𝒃

𝐴: 𝐽𝐾 × 𝐽𝐾 𝒃: 𝐽𝐾 𝐽 = 5,461, 𝐾 = 6

𝐴: 32,766 × 32,766 = 1 billion elements!

Challenges with ELM-FBPINNs

Solution: exploit sparsity

Challenge 2: Big matrix! 𝐴 𝒂∗ = 𝒃

𝐴: 𝐽𝐾 × 𝐽𝐾 𝒃: 𝐽𝐾 𝐽 = 5,461, 𝐾 = 6

𝐴: 32,766 × 32,766 = 1 billion elements!

Use sparse solver which only uses matvec products

Can physics-informed neural networks (PINNs) beat finite
difference / finite element methods?

Are PINNs becoming FEM?
Finite element method

𝑚
𝑑2𝑢

𝑑𝑡2
+ 𝜇

𝑑𝑢

𝑑𝑡
+ 𝑘𝑢 = 𝑓

ො𝑢 𝑡, 𝒂 =෍

𝑗

𝐽

𝑎𝑗𝜙𝑗(𝑡)

න
0

𝑇

𝜙𝑖 𝑡 𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ො𝑢 𝑡, 𝒂 𝑑𝑡 = න

0

𝑇

𝜙𝑖 𝑡 𝑓𝑑𝑡 ∀𝑖 = 0, . . , 𝐽

⇒ −𝑚𝐿 + 𝜇𝐷 + 𝑘𝑀 𝒂 = 𝒃

𝐴: 𝐽𝐾 × 𝐽𝐾
(sparse & symmetric)

𝒃: 𝐽𝐾 𝐿,𝐷,𝑀: 𝐽 × 𝐽
(sparse & symmetric)

𝒃: 𝐽

ELM-FBPINN

𝑚
𝑑2𝑢

𝑑𝑡2
+ 𝜇

𝑑𝑢

𝑑𝑡
+ 𝑘𝑢 = 𝑓

ො𝑢 𝑡, 𝒂 =෍

𝑗

𝐽

𝑤𝑗 𝑡 ෍

𝑘

𝐾

𝑎𝑗𝑘𝜙(𝑡, 𝜽𝑗𝑘)

𝐿 𝒂 =෍

𝑖

𝑁

𝑚
𝑑2

𝑑𝑡2
+ 𝜇

𝑑

𝑑𝑡
+ 𝑘 ො𝑢 𝑡𝑖 , 𝒂 − 𝑓(𝑡𝑖)

2

= 𝑀𝒂 − 𝒇 2

⇒ 𝐴𝒂 − 𝒃 = 𝟎

Can we do better i.e. how about preconditioning?

Idea: filter the redundant features in each
block then precondition directly the least
squares problem
Sparsity is preserved.

Local feature filtering for scalable and well-conditioned Random Feature Methods

JW van Beek, V Dolean, B Moseley, CMAME, 2025.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZzHAiHkAAAAJ&sortby=pubdate&citation_for_view=ZzHAiHkAAAAJ:kO05sadLmrgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZzHAiHkAAAAJ&sortby=pubdate&citation_for_view=ZzHAiHkAAAAJ:kO05sadLmrgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZzHAiHkAAAAJ&sortby=pubdate&citation_for_view=ZzHAiHkAAAAJ:kO05sadLmrgC

Takeaways

• From optimization to linear algebra: reframing learning as a numerical linear algebra problem

enables new algorithmic insights and requires new methodologies.

• Scalability & robustness: extending to multilevel and overlapping decompositions could

improve performance in large-scale or high-dimensional settings.

• Acceleration & theory: GPU implementations and convergence-rate analysis are key next
steps.

• Beyond linear problems: the framework naturally extends to nonlinear PDEs via Newton-type
iterations.

A change in perspective

Hybrid future
The integration of machine learning (Keplerian paradigm) and more general
artificial intelligence technologies with physical modelling based on first principles (Newtonian paradigm)
will impact scientific computing in engineering in fundamental ways. (Stefan Kurz, ETH Zurich)

	Slide 1: From Neural Networks to Solvers: Scalable Physics-Informed Learning for PDEs
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Scientific Machine Learning (part of Artificial Scientific Intelligence: AI4Science – Science4AI)
	Slide 7: Classical Solvers vs Scientific ML
	Slide 8: Importance of PDEs
	Slide 9
	Slide 10
	Slide 11: Can physics-informed neural networks (PINNs) beat finite difference / finite element methods?
	Slide 12: What is a physics-informed neural network?
	Slide 13: What is a physics-informed neural network?
	Slide 14: What is a physics-informed neural network?
	Slide 15: Scalability challenges of PINNs
	Slide 16: Scaling PINNs to high frequency / multiscale problems
	Slide 17: Scaling PINNs to high frequency / multiscale problems
	Slide 18: Scaling PINNs to high frequency / multiscale problems
	Slide 19: Scaling PINNs to high frequency / multiscale problems
	Slide 20
	Slide 21
	Slide 22: Divide and conquer approaches tackle spectral bias
	Slide 23: PINNs + domain decomposition
	Slide 24: Finite basis PINNs (FBPINNs)
	Slide 25: FBPINNs in 1D
	Slide 26: FBPINNs in 1D
	Slide 27: FBPINNs vs PINNs
	Slide 28: FBPINNs vs PINNs
	Slide 29: FBPINNs vs PINNs
	Slide 30: Multi-scale simulation with FBPINNs
	Slide 31: Multi-scale simulation with FBPINNs
	Slide 32: Why are FBPINNs still slow?
	Slide 33: Idea – Extreme learning machines
	Slide 34: FBPINN
	Slide 35: Extreme learning machine (ELM) FBPINNs
	Slide 36: Extreme learning machine (ELM) FBPINNs
	Slide 37: Extreme learning machine (ELM) FBPINNs
	Slide 38: Extreme learning machine (ELM) FBPINNs
	Slide 39: Extreme learning machine (ELM) FBPINNs
	Slide 40: Quadratic optimisation
	Slide 41: Quadratic optimisation
	Slide 42: Example – 1D harmonic oscillator
	Slide 43: Example – 2D multi-scale Laplace
	Slide 44: Example – 2D multi-scale Laplace
	Slide 45: Challenges with ELM-FBPINNs
	Slide 46: Challenges with ELM-FBPINNs
	Slide 47: Challenges with ELM-FBPINNs
	Slide 48: Challenges with ELM-FBPINNs
	Slide 49: Can physics-informed neural networks (PINNs) beat finite difference / finite element methods?
	Slide 50: Are PINNs becoming FEM?
	Slide 51: Can we do better i.e. how about preconditioning?
	Slide 52: Takeaways
	Slide 53: A change in perspective
	Slide 54: Hybrid future

