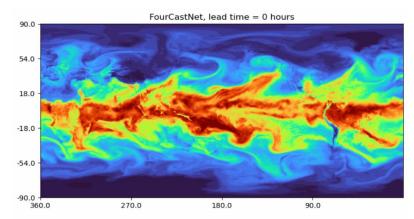
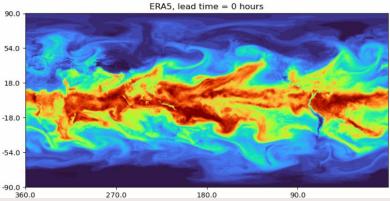


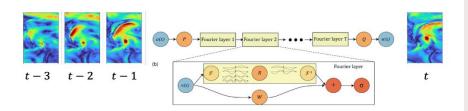
Al for science: a revolution?





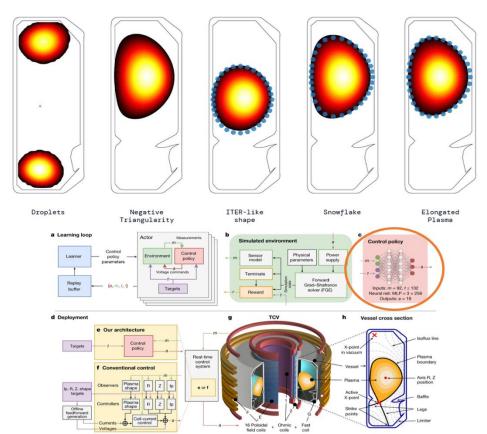
How Big Tech AI models nailed forecast for Hurricane Lee a week in advance

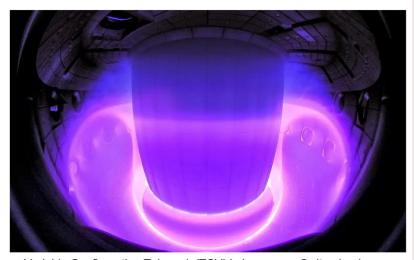
U.S. and European weather agencies are escalating their engagement with artificial intelligence as the technology rapidly advances



Pathak et al, FourCastNet: A Global Data-driven High-resolution Weather Model using Adaptive Fourier Neural Operators, ArXiv (2022)

Al for science: a revolution?





Variable Configuration Tokamak (TCV) in Lausanne, Switzerland Source: DeepMind & SPC/EPFL

nature

Explore content
About the journal
Publish with us

nature > articles > article

Article | Open access | Published: 16 February 2022

Magnetic control of tokamak plasmas through deep reinforcement learning

Jonas Degrave, Federico Felici , Jonas Buchli , Michael Neunert, Brendan Tracey , Francesco Caroanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli, Jackie Kay, Antoine Merle, Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva, ... Martin Riedmiller + Show authors

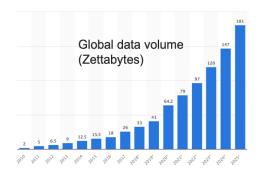
Nature 602, 414-419 (2022) | Cite this article

206k Accesses | 223 Citations | 2430 Altmetric | Metrics

Why now?

Neural networks date back to the 1950's – so why is deep learning so popular today?

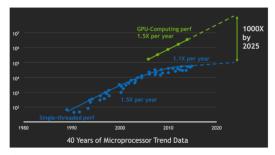
Rapidly increasing amounts of data



Source: Statista

IM GENET

Hardware improvements



Source: NVIDIA

- Graphical processing units (GPUs)
- Highly optimised for deep learning (massively parallel)

Software improvements

- Mature deep learning frameworks
- Better training algorithms
- Deeper and more sophisticated architectures

Scientific machine learning

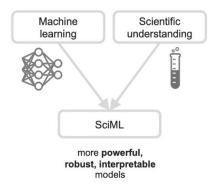
```
Hamiltonian neural networks
Learned sub-grid processes
Hidden physics models

Physics-informed neural networks
AI Feynman

Differentiable simulation
Physics-informed neural operators

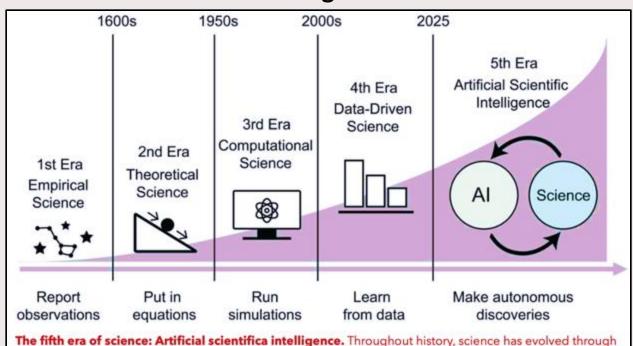
Fourier neural operators
Encoding conservation laws

Encoding physical symmetries Neural ODEs
```



Scientific Machine Learning

(part of Artificial Scientific Intelligence: AI4Science – Science4AI)



The fifth era of science: Artificial scientifica intelligence. Throughout history, science has evolved through distinct eras: empirical, theoretical, computational, and data-driven. Today, it is entering the fifth era: artificial scientific intelligence. Figure credit: Nina Miolane, Haewon Jeong, and Yao Qin, University of California, Santa Barbara.

Classical Solvers vs Scientific ML

Model-first

(Classical solvers)

- Transparent: you can see why it works
- Physics built-in from the start
- Slower per run, but predictable
- No training data needed
- High trust: proofs & error estimates

Data+Model

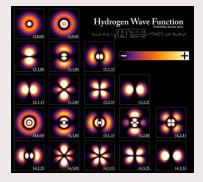
(Scientific ML)

- Often a black box needs explainers
- Physics can be added (PINNs, operators)
- Very fast after training
- Learns from data (needs examples)
- Trust is active research (UQ, robustness)

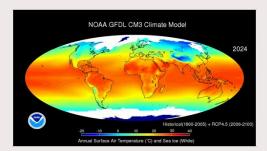
More physics

More data

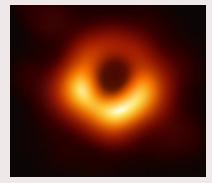
Importance of PDEs



Source: Wikipedia Schrödinger equation



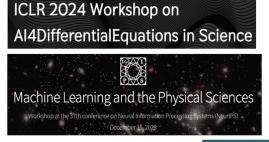
Source: NOAA
Navier-Stokes equations



Source: The Event Horizon Telescope (2019)
Einstein field equations

Source: Kondo and Miura, Science (2010) Reaction-diffusion equation

A rapidly growing field



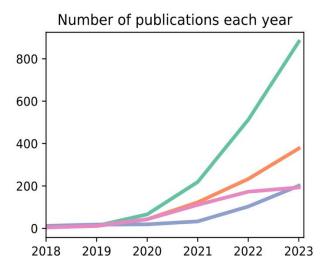
Synergy of Scientific and Machine Learning Modeling

ICML 2023 Workshop, July 28 2023, Room 320 of the Hawai'i Convention Center

ICLR 2023 Workshop on Physics for Machine Learning

The Symbiosis of Deep Learning and Differential Equations (DLDE)

NeurIPS 2022 Workshop

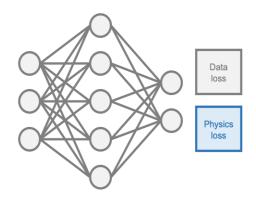


physics-informed neural networks
 scientific machine learning / physics-informed ML / Al for science
 operator learning / neural operators
 differentiable physics / neural differential equations

Source: Scopus keyword search (Feb 2024)

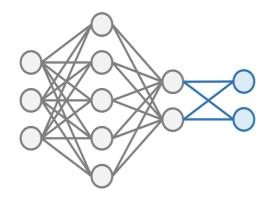
Ways to incorporate scientific principles into machine learning

Loss function



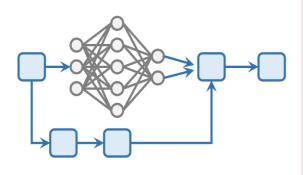
Example:
Physics-informed neural networks
(add governing equations to loss
function)

Architecture



Example:
Encoding symmetries / conservation laws
(e.g. energy conservation, rotational invariance)

Hybrid approaches



Example:
Neural differential equations
(incorporating neural networks into PDE models)

Can physics-informed neural networks (PINNs) beat finite difference / finite element methods?

Can physics-informed neural networks beat the finite element method? 3

Tamara G Grossmann

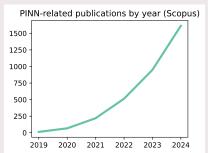
, Urszula Julia Komorowska, Jonas Latz,
Carola-Bibiane Schönlieb

IMA Journal of Applied Mathematics, Volume 89, Issue 1, January 2024, Pages 143–174, https://doi.org/10.1093/imamat/hxae011

Published: 23 May 2024 Article history ▼

7. Discussion and conclusions

After having investigated each of the PDEs on its own, let us now discuss and draw conclusions from the results as a whole. Considering the solution time and accuracy, PINNs are not able to beat FEM in our study. In all the examples that we have studied, the FEM solutions were faster at the same or at a higher accuracy.



Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks 3

PNAS Nexus, Volume 3, Issue 1, January 2024, pgae005,

https://doi.org/10.1093/pnasnexus/pgae005

Published: 11 January 2024 Article history ▼

Conclusion

We introduce the ODIL framework for solving inverse problems for PDEs by casting their discretization as an optimization problem and applying optimization techniques that are widely available in machine-learning software. The concept of casting the PDE as is closely related to the neural network formulations proposed by (15–17) and recently revived as PINNs. However, the fact that we use the discrete approximation of the equations allows for ODIL to be orders of magnitude more efficient in terms of computational cost and accuracy compared to the PINN for which complex flow problems "remain elusive" (71).

TITLE-ABS-KEY ("physics-informed neural network" OR "physics informed neural network")

What is a physics-informed neural network?

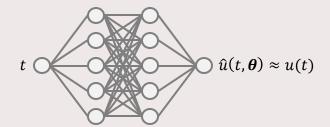
Problem: damped harmonic oscillator

$$m\frac{d^2u}{dt^2} + \mu \frac{du}{dt} + ku = 0$$

What is a physics-informed neural network?

Problem: damped harmonic oscillator

$$m\frac{d^2u}{dt^2} + \mu \frac{du}{dt} + ku = 0$$



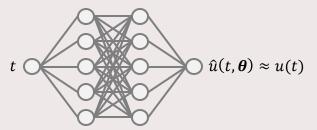
Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, JCP (2018)

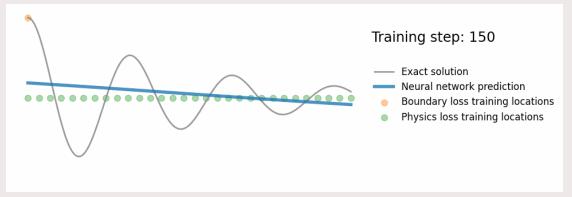
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)

What is a physics-informed neural network?

Problem: damped harmonic oscillator

$$m\frac{d^2u}{dt^2} + \mu \frac{du}{dt} + ku = 0$$





Boundary loss
$$\left\{ \begin{array}{l} L(\theta) = \lambda_1 (\hat{u}(t=0,\theta)-1)^2 \\ + \lambda_2 \left(\frac{d\hat{u}}{dt}(t=0,\theta)-0\right)^2 \\ \\ + \frac{1}{N_p} \sum_i^{N_p} \left(\left[m\frac{d^2}{dt^2} + \mu\frac{d}{dt} + k\right] \hat{u}(t,\theta)\right)^2 \end{array} \right.$$

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, JCP (2018)

Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)

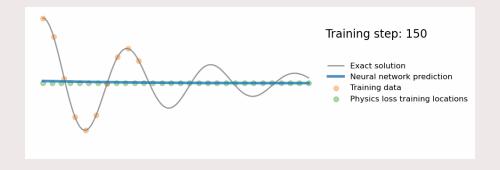
Scalability challenges of PINNs

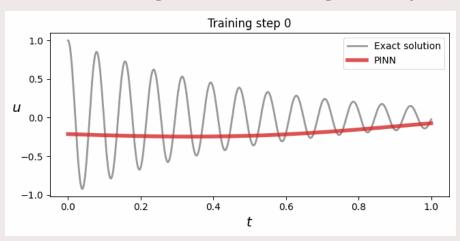
Advantages of PINNs

- Mesh-free
- Can solve forward and inverse problems, and seamlessly incorporate observational data
- Mostly unsupervised
- Can perform well for high-dimensional PDEs

Limitations of PINNs

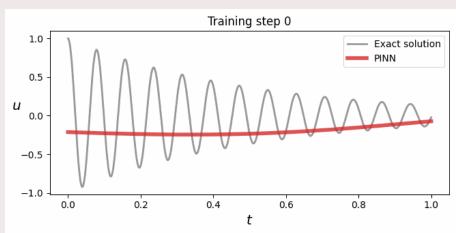
- Computational cost often high (especially for forward-only problems)
- Can be hard to optimise
- Challenging to scale to high-frequency, multi-scale problems





Problem: PINNs struggle to solve high-frequency / multiscale problems

Damped harmonic



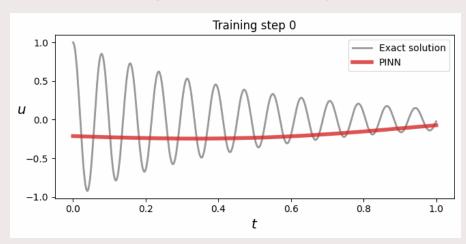
Problem: PINNs **struggle** to solve high-frequency / multiscale problems

Damped harmonic oscillator

Spectral bias:

NNs tend to converge much **slower** on high frequencies than on low frequencies

Rahaman, N., et al, On the spectral bias of neural networks. 36th International Conference on Machine Learning, ICML (2019)

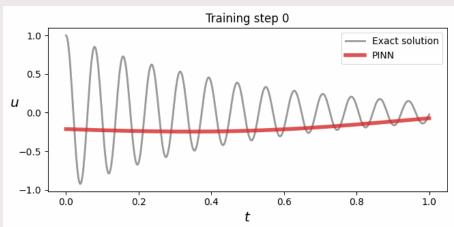


Problem: PINNs **struggle** to solve high-frequency / multiscale problems

Damped harmonic oscillator

As higher frequencies are added:

- More collocation points required
- · Larger neural network required
- Spectral bias slows convergence



Problem: PINNs **struggle** to solve high-frequency / multiscale problems

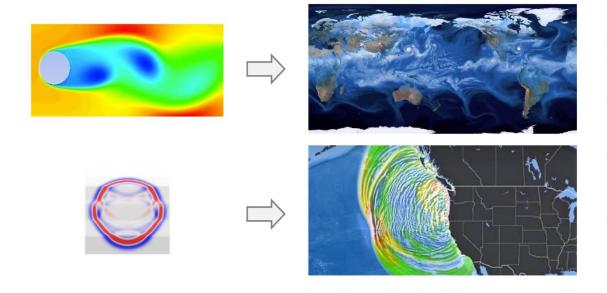
Damped harmonic oscillator

As higher frequencies are added:

- More collocation points required ($\propto \omega^d$)
- Larger neural network required (∝ f(ω))
- Spectral bias slows convergence ($\propto s(\omega)$)
- \Rightarrow Empirically, cost of training often $\sim \mathcal{O}(\omega^d f(\omega)s(\omega))$

c.f. FD simulation, where cost of simulation can scale like $\sim \mathcal{O}(\omega^d)$

Scaling to more complex problems



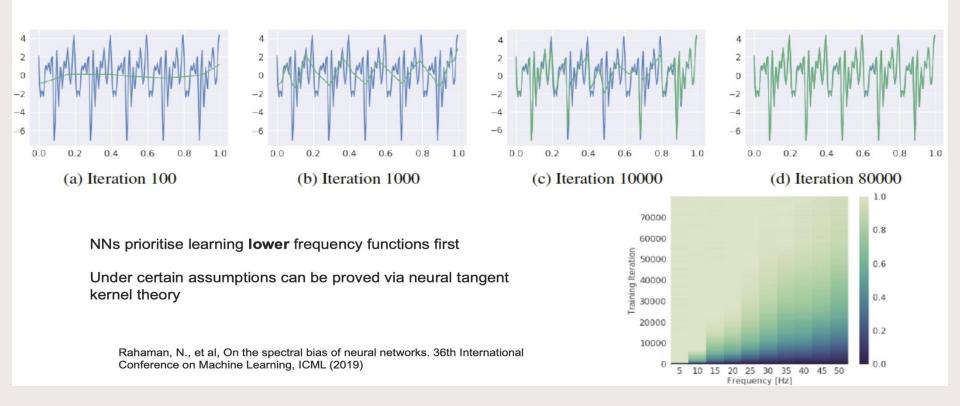
It is often challenging to **scale** traditional scientific algorithms to:

- More complex phenomena (multi-scale, multi-physics)
- Large domains / higher frequency solutions
- Incorporate real, noisy and sparse data

How do PINNs cope in this setting?

Majority of PINN research focuses on **toy/simplified** problems, as proof-of-principle studies

Spectral bias issue



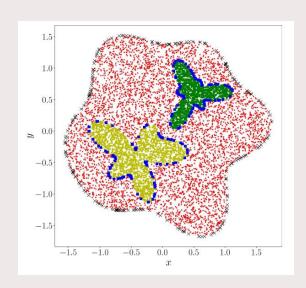
This behaviour can limit the model's ability to scale effectively, especially when the goal is to approximate complex scientific data with both large-scale and fine-scale dynamics.

Divide and conquer approaches tackle spectral bias

Partition of Unity Networks (POUNets) offer several mechanisms to mitigate spectral bias, especially in the context of scaling SciML models.

- Partitioning the domain into smaller regions,
- Allowing localized learning of high-frequency features.
- Leveraging multiscale representations, and
- Ensuring smooth transitions across regions

PINNs + domain decomposition



Jagtap, A., et al., Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Communications in Computational Physics (2020)

Idea:

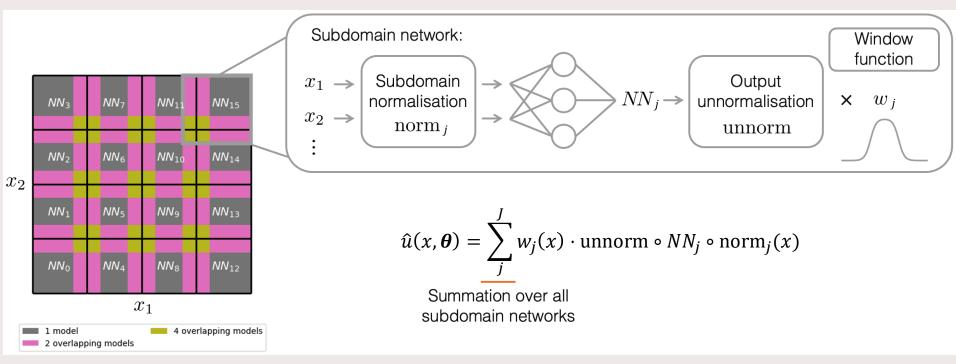
Take a "divide-and-conquer" strategy to model more complex problems:

- Divide modelling domain into many smaller subdomains
- 2. Use a separate neural network in each subdomain to model the solution

Hypothesis:

The resulting (coupled) local optimization problems are easier to solve than a single global problem

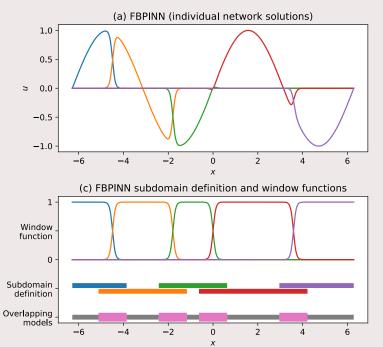
Finite basis PINNs (FBPINNs)



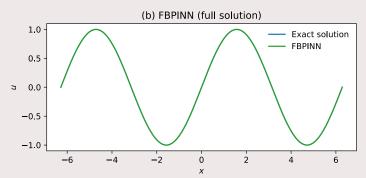
Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, ACM (2023)

Idea: use **overlapping** subdomains and a **globally** defined solution ansatz

FBPINNs in 1D



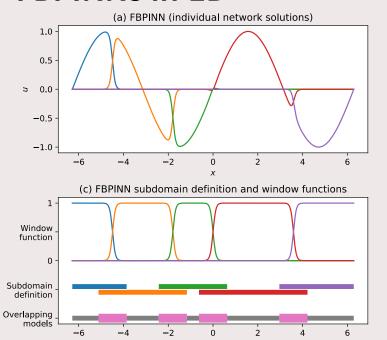
Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, ACM (2023)



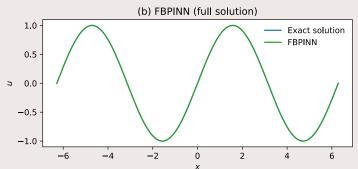
$$\begin{split} \widehat{u}(x, \pmb{\theta}) &= \sum_{j}^{J} w_{j}(x) \cdot \text{unnorm} \circ \textit{NN}_{j} \circ \text{norm}_{j}(x) \\ & \text{Window} \quad \begin{array}{c} \text{Subdomain} \\ \text{function} \end{array} \quad \begin{array}{c} \text{Individual subdomain} \\ \text{normalisation} \end{array} \end{split}$$

Idea: use **overlapping** subdomains and a **globally** defined solution ansatz

FBPINNs in 1D



Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, ACM (2023)



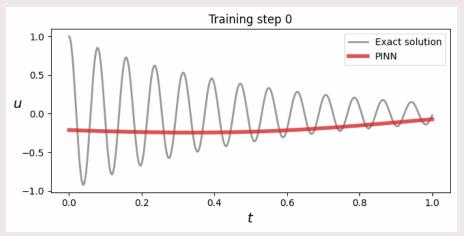
$$\hat{u}(x, \boldsymbol{\theta}) = \sum_{j}^{J} w_{j}(x) \cdot \text{unnorm} \circ NN_{j} \circ \text{norm}_{j}(x)$$

Window Subdomain Individual subdomain function network normalisation

Notes:

- FBPINNs can be trained with same loss function as PINNs
- And can simply be thought of as a "custom architecture"

FBPINNs vs PINNs



Training step 0

1.0

0.5

0.5

-0.5

-1.0

0.0

0.2

0.4

0.6

0.8

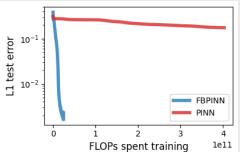
1.0

FBPINN solution

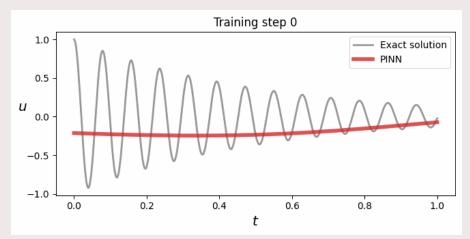
Problem: PINNs **struggle** to solve high-frequency / multiscale problems

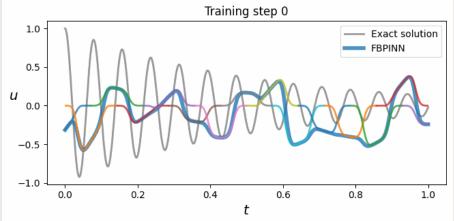
Number of subdomains: 15

Damped harmonic oscillator



FBPINNs vs PINNs

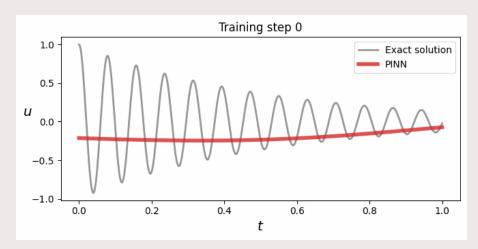


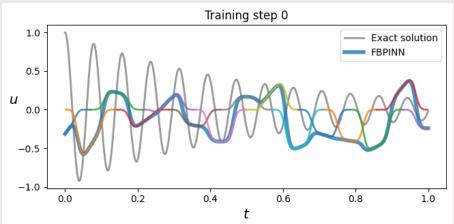


As higher frequencies are added:

- More collocation points required ($\propto \omega^d$)
- Larger neural network required ($\propto f(\omega)$)
- Spectral bias slows convergence ($\propto s(\omega)$)
- \Rightarrow Empirically, cost of training often $\sim \mathcal{O}(\omega^d f(\omega)s(\omega))$

FBPINNs vs PINNs





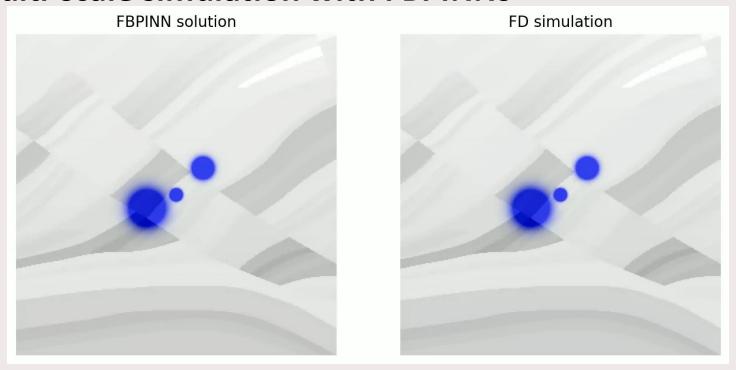
As higher frequencies are added:

- More collocation points required ($\propto \omega^d$)
- Larger neural network required ($\propto f(\omega)$)
- Spectral bias slows convergence ($\propto s(\omega)$)
- \Rightarrow Empirically, cost of training often $\sim \mathcal{O}(\omega^d f(\omega)s(\omega))$

As higher frequencies are added:

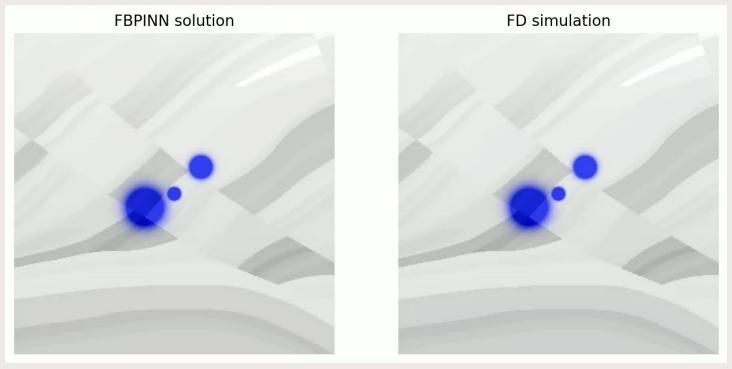
- More collocation points required ($\propto \omega^d$)
- · Same size network can be used in each subdomain
- Domain decomposition alleviates spectral bias
- \Rightarrow Empirically, cost of training can be closer to $\sim \mathcal{O}(\omega^d)$

Multi-scale simulation with FBPINNs



Number of subdomains: 60 x 60 x 60 = 216,000 Total number of trainable parameters: 9 M

Multi-scale simulation with FBPINNs

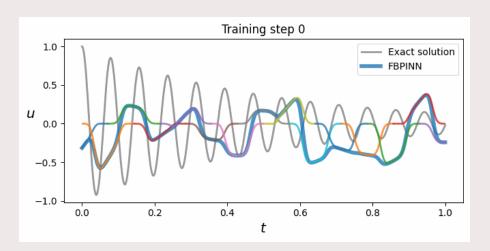


Training time: ~2 hrs on GPU (with optimised code)

Number of subdomains: $60 \times 60 \times 60 = 216,000$ Total number of trainable parameters: 9 M

FD simulation time: ~5 mins on CPU!

Why are FBPINNs still slow?



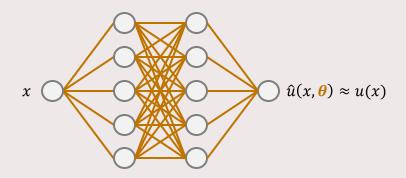
As higher frequencies are added:

- More collocation points required ($\propto \omega^d$)
- Same size network can be used in each subdomain
- Domain decomposition alleviates spectral bias
- \Rightarrow Empirically, cost of training can be closer to $\sim \mathcal{O}(\omega^d)$

BUT gradient descent is a slow optimiser (non-convex loss requires lots of iterations + backprop introduces lots of overhead)

..can we **avoid** gradient descent altogether?

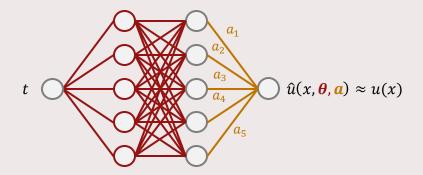
Idea – Extreme learning machines



Neural network

All weights trainable

$$\hat{u} = NN(x, \boldsymbol{\theta})$$



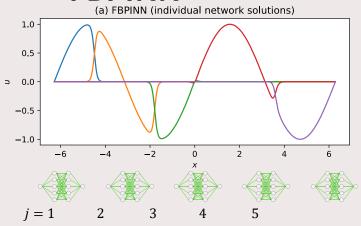
Extreme learning machine

Hidden weights are **randomly** initialised and **fixed**Only last layer **trainable**

$$\hat{u} = \sum_{k}^{K} a_{k} \phi(x, \boldsymbol{\theta}_{k})$$

Huang, G. Bin, Zhu, Q. Y., & Siew, C. K. Extreme learning machine: Theory and applications. Neurocomputing. (2006).

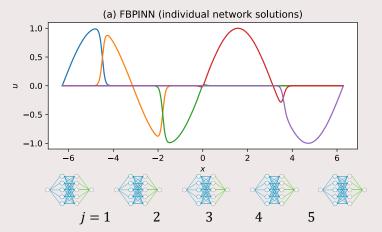
FBPINN



$$\hat{u}(x, \boldsymbol{\theta}) = \sum_{j}^{J} w_{j}(x) \ NN_{j}(x, \boldsymbol{\theta}_{j})$$
 FBPINN Window Subdomain function network

(ignoring normalization functions for simplicity)

Extreme learning machine (ELM) FBPINNs



$$\hat{u}(x, \mathbf{a}) = \sum_{j}^{J} w_{j}(x) \sum_{k}^{K} a_{jk} \phi(x, \mathbf{\theta}_{jk})$$
 ELM-FBPINN

ELM **in each** subdomain

J = total number of subdomainsK = number of basis functions per subdomain

Dwivedi, V., and Srinivasan, B. Physics Informed Extreme Learning Machine (PIELM)—A rapid method for the numerical solution of partial differential equations. Neurocomputing. (2020).

Dong, S., and Li, Z. Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations. Computer Methods in Applied Mechanics and Engineering. (2021).

Extreme learning machine (ELM) FBPINNs

$$\hat{u}(x, \mathbf{a}) = \sum_{j}^{J} w_{j}(x) \sum_{k}^{K} a_{jk} \phi(x, \boldsymbol{\theta}_{jk})$$

ELM-FBPINN

ELM in each subdomain

 $L = \sum_{i}^{N} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \hat{u}(t_i, \pmb{\theta}) \right)^2 \\ \text{(ignoring boundary loss for simplicity)} \\ J = \text{total number of subdomains} \\ K = \text{number of basis functions per subdomain} \\ N = \text{number of collocation points}$

$$= \sum_{i}^{N} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \sum_{j}^{J} w_j(t_i) \sum_{k}^{K} a_{jk} \phi(x, \boldsymbol{\theta}_{jk}) \right)^2$$

$$=\sum_{i}^{N}\left(\sum_{j}^{J}\sum_{k}^{K}a_{jk}\mathcal{N}w_{j}(t_{i})\phi(t_{i},\boldsymbol{\theta}_{jk})\right)^{2}=\left\|\begin{pmatrix}\mathcal{N}w_{j}(t_{0})\phi(t_{0},\boldsymbol{\theta}_{00}) & ... & \mathcal{N}w_{j}(t_{0})\phi(t_{0},\boldsymbol{\theta}_{JK})\\ \vdots & \ddots & \vdots\\ \mathcal{N}w_{j}(t_{N})\phi(t_{N},\boldsymbol{\theta}_{00}) & ... & \mathcal{N}w_{j}(t_{N})\phi(t_{N},\boldsymbol{\theta}_{JK})\end{pmatrix}\begin{pmatrix}a_{00}\\ \vdots\\ a_{JK}\end{pmatrix}-\begin{pmatrix}0\\ \vdots\\ 0\end{pmatrix}\right\|$$

Extreme learning machine (ELM) FBPINNs

$$L = \sum_{i}^{N} \left(\left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right] \hat{u}(t_{i}, \boldsymbol{\theta}) \right)^{2}$$

$$\hat{u}(x, \mathbf{a}) = \sum_{j}^{J} w_{j}(x) \sum_{k}^{K} a_{jk} \phi(x, \mathbf{\theta}_{jk})$$

ELM-FBPINN

ELM in each subdomain

J = total number of subdomains

K = number of basis functions per subdomain

N = number of collocation points

ELM-FBPINN

$$= \sum_{i}^{N} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \sum_{j}^{J} w_j(t_i) \sum_{k}^{K} a_{jk} \phi(x, \boldsymbol{\theta}_{jk}) \right)^2$$

$$= \sum_{i}^{N} \left(\sum_{j}^{J} \sum_{k}^{K} a_{jk} \mathcal{N} w_{j}(t_{i}) \phi(t_{i}, \boldsymbol{\theta}_{jk}) \right) = \left\| \right\|$$

Extreme learning machine (ELM) FBPINNs

$$L = \sum_{i}^{N} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \hat{u}(t_i, \boldsymbol{\theta}) \right)^2$$

$$\hat{u}(x, \mathbf{a}) = \sum_{j=1}^{J} w_{j}(x) \sum_{k=1}^{K} a_{jk} \phi(x, \mathbf{\theta}_{jk})$$

ELM-FBPINN

ELM in each subdomain

I = total number of subdomains

K = number of basis functions per subdomain

N = number of collocation points

$$\begin{aligned} & = \sum_{i}^{N} \left(\left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right] \sum_{j}^{J} w_{j}(t_{i}) \sum_{k}^{K} a_{jk} \phi(x, \boldsymbol{\theta}_{jk}) \right)^{2} \\ & = \sum_{i}^{N} \left(\sum_{j}^{J} \sum_{k}^{K} a_{jk} \mathcal{N} w_{j}(t_{i}) \phi(t_{i}, \boldsymbol{\theta}_{jk}) \right)^{2} \\ & = \sum_{i}^{N} \left(\sum_{j}^{J} \sum_{k}^{K} a_{jk} \mathcal{N} w_{j}(t_{i}) \phi(t_{i}, \boldsymbol{\theta}_{jk}) \right)^{2} = \left| \begin{pmatrix} \mathcal{N} w_{j}(t_{0}) \phi(t_{0}, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N} w_{j}(t_{0}) \phi(t_{0}, \boldsymbol{\theta}_{JK}) \\ \vdots & \ddots & \vdots \\ \mathcal{N} w_{j}(t_{N}) \phi(t_{N}, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N} w_{j}(t_{N}) \phi(t_{N}, \boldsymbol{\theta}_{JK}) \end{pmatrix} \begin{pmatrix} a_{00} \\ \vdots \\ a_{JK} \end{pmatrix} - \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \right|^{2} \end{aligned}$$

Assuming
$$\mathcal N$$
 is a linear operator, $\mathcal N = \left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right]$

Extreme learning machine (ELM) FBPINNs

$$L = \sum_{i}^{N} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \hat{u}(t_i, \boldsymbol{\theta}) \right)^2$$

$$\hat{u}(x, \mathbf{a}) = \sum_{j}^{J} w_{j}(x) \sum_{k}^{K} a_{jk} \phi(x, \mathbf{\theta}_{jk})$$
 ELM-FBPINN

ELM in each subdomain

J= total number of subdomains K= number of basis functions per subdomain N= number of collocation points

$$= \sum_{i}^{N} \left(\left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right] \sum_{j}^{J} w_{j}(t_{i}) \sum_{k}^{K} a_{jk} \phi(x, \boldsymbol{\theta}_{jk}) \right)^{2}$$

$$= \sum_{i}^{N} \left(\sum_{j}^{J} \sum_{k}^{K} a_{jk} \mathcal{N} w_{j}(t_{i}) \phi(t_{i}, \boldsymbol{\theta}_{jk}) \right)^{2} = \left\| \begin{pmatrix} \mathcal{N} w_{j}(t_{0}) \phi(t_{0}, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N} w_{j}(t_{0}) \phi(t_{0}, \boldsymbol{\theta}_{JK}) \\ \vdots & \ddots & \vdots \\ \mathcal{N} w_{j}(t_{N}) \phi(t_{N}, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N} w_{j}(t_{N}) \phi(t_{N}, \boldsymbol{\theta}_{JK}) \end{pmatrix} \begin{pmatrix} a_{00} \\ \vdots \\ a_{JK} \end{pmatrix} - \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \right\|^{2}$$

$$\equiv ||M\mathbf{a} - \mathbf{f}||^2$$

$$M: N \times JK \quad \mathbf{a}: JK \quad \mathbf{f}: N$$

Quadratic optimisation

This is a linear least squares problem!

$$L(\mathbf{a}) = \|M\mathbf{a} - f\|^2$$

The global minima is given by solving

Where,
$$A \; \pmb{a}^* = \pmb{b} \qquad ^{(\text{normal equation})}$$

$$A = M^T N\!\!/\!\! K \qquad ^{JK \times JK}$$

$$\pmb{b} = M^T \pmb{f}$$

Quadratic optimisation

This is a linear least squares problem!

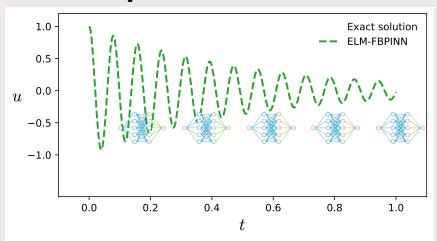
$$L(\mathbf{a}) = \|M\mathbf{a} - \mathbf{f}\|^2$$

The global minima is given by solving

$$A \ \pmb{a}^* = \pmb{b}$$
 (normal equation) Where,
$$A = M^T M \qquad JK \times JK \\ \pmb{b} = M^T \pmb{f} \qquad JK$$

- By using a linear combination of fixed basis functions, we have turned the loss function from non-convex to convex (quadratic)
- I.e., we can now use **linear solvers** to train ELM-FBPINNs, instead of gradient descent!

Example – 1D harmonic oscillator



FBPINN / ELM-FBPINN:

20 subdomains

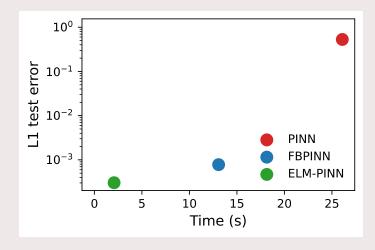
1 hidden layer, 8 hidden units (=basis functions)

Tanh activation

PINN:

2 hidden layers, 64 hidden units

Tanh activation



PINN / FBPINN: Adam optimiser, 0.001 learning rate ELM-FBPINN: Conjugate gradient linear solver

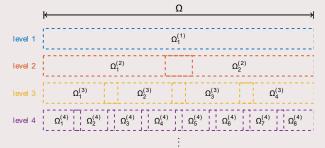
Anderson, S., Dolean, V., Moseley, B., & Pestana, J. ELM-FBPINN: efficient finite-basis physics-informed neural networks. ArXiv. (2024).

Example – 2D multi-scale Laplace

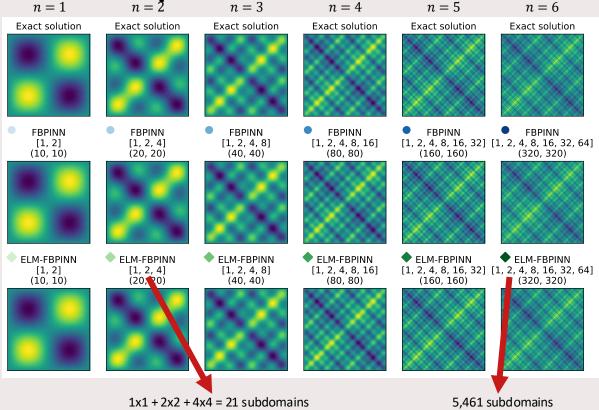
Multi-scale problem:

$$\nabla^2 u(x_1, x_2) = -\frac{2}{n} \sum_{i=1}^{n} (2^i \pi)^2 \sin(2^i \pi x_1) \sin(2^i \pi x_2)$$

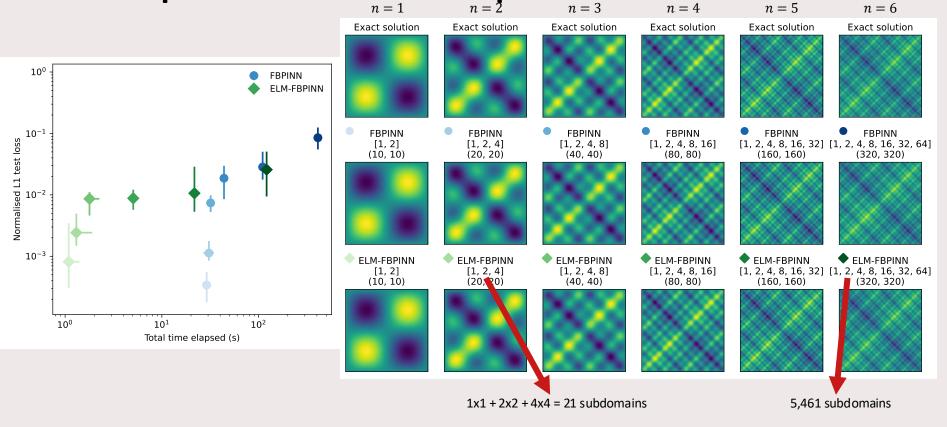
Multilevel domain decomposition:



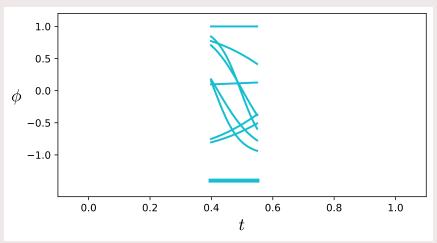
Dolean, V., et al, Multilevel domain decomposition-based architectures for physics-informed neural networks, CMAME (2024)



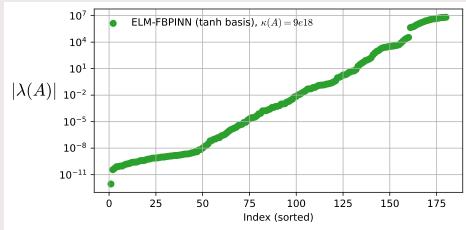
Example – 2D multi-scale Laplace n=1



Challenge 1: Linear dependence between basis functions \Rightarrow poorly conditioned matrix $A a^* = b$



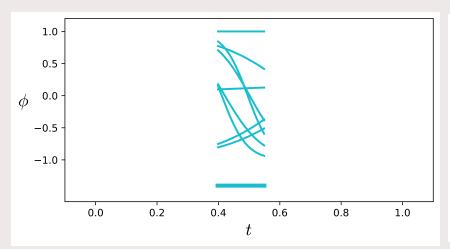
Conjugate gradient solver requires ~5000 iterations

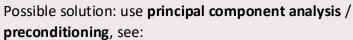


$$M = \begin{pmatrix} \mathcal{N}w_j(t_0)\phi(t_0, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N}w_j(t_0)\phi(t_0, \boldsymbol{\theta}_{JK}) \\ \vdots & \ddots & \vdots \\ \mathcal{N}w_j(t_N)\phi(t_N, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N}w_j(t_N)\phi(t_N, \boldsymbol{\theta}_{JK}) \end{pmatrix},$$

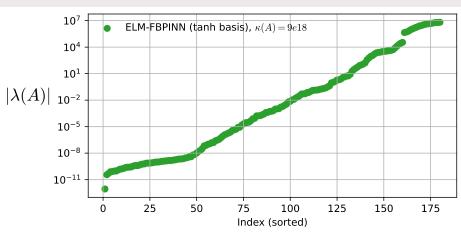
$$A = M^T M$$

Challenge 1: Linear dependence between basis functions \Rightarrow poorly conditioned matrix $A a^* = b$





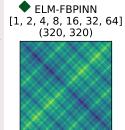
Shang, Y., Heinlein, A., Mishra, S., & Wang, F. Overlapping Schwarz Preconditioners for Randomized Neural Networks with Domain Decomposition. ArXiv. (2024).



$$M = \begin{pmatrix} \mathcal{N}w_j(t_0)\phi(t_0, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N}w_j(t_0)\phi(t_0, \boldsymbol{\theta}_{JK}) \\ \vdots & \ddots & \vdots \\ \mathcal{N}w_j(t_N)\phi(t_N, \boldsymbol{\theta}_{00}) & \dots & \mathcal{N}w_j(t_N)\phi(t_N, \boldsymbol{\theta}_{JK}) \end{pmatrix},$$

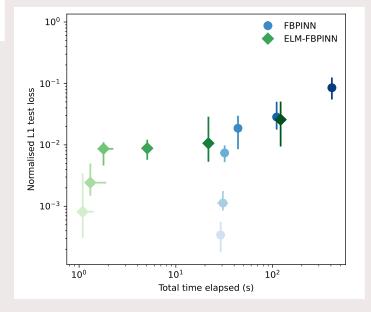
$$A = M^T M$$

Challenge 2: Big matrix! $A a^* = b$ $A: JK \times JK \ b: JK$ ELM-FBPINI
[1, 2, 4, 8, 16, 3
(320, 320)]



$$J = 5,461, K = 6$$

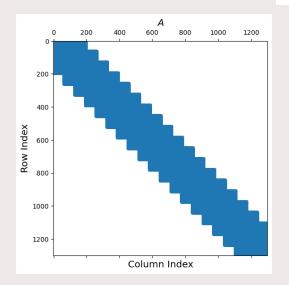
A: 32,766 × 32,766 = 1 billion elements!

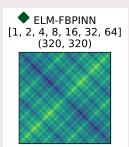


Challenge 2: Big matrix! $A a^* = b$

$$A: JK \times JK \ \boldsymbol{b}: JK$$

Solution: exploit sparsity





$$J = 5,461, K = 6$$

A: 32,766 × 32,766 = 1 billion elements!

Use sparse solver which only uses matvec products

```
cg(A, b, x0=None, *, rtol=1e-05, atol=0.0, maxiter=None, M=None, callback=None)

Use Conjugate Gradient iteration to solve Ax = b.

Parameters:

A: (sparse array, ndarray, LinearOperator)

The real or complex N-by-N matrix of the linear system. A must represent a hermitian, positive definite matrix. Alternatively, A can be a linear operator which can produce Ax using, e.g., scipy.sparse.linalg.LinearOperator.
```

Can physics-informed neural networks (PINNs) beat finite difference / finite element methods?

Can physics-informed neural networks beat the finite element method? 3

Tamara G Grossmann ™, Urszula Julia Komorowska, Jonas Latz, Carola-Bibiane Schönlieb

IMA Journal of Applied Mathematics, Volume 89, Issue 1, January 2024, Pages 143–174, https://doi.org/10.1093/imamat/hxae011

Published: 23 May 2024 Article history ▼

7. Discussion and conclusions

After having investigated each of the PDEs on its own, let us now discuss and draw conclusions from the results as a whole. Considering the solution time and accuracy, PINNs are not able to beat FEM in our study. In all the examples that we have studied, the FEM solutions were faster at the same or at a higher accuracy.

Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks 8

Petr Karnakov, Sergey Litvinov, Petros Koumoutsakos

Author Notes

PNAS Nexus, Volume 3, Issue 1, January 2024, pgae005,

https://doi.org/10.1093/pnasnexus/pgae005

Published: 11 January 2024 Article history ▼

Conclusion

We introduce the ODIL framework for solving inverse problems for PDEs by casting their discretization as an optimization problem and applying optimization techniques that are widely available in machine-learning software. The concept of casting the PDE as is closely related to the neural network formulations proposed by (15–17) and recently revived as PINNs. However, the fact that we use the discrete approximation of the equations allows for ODIL to be orders of magnitude more efficient in terms of computational cost and accuracy compared to the PINN for which complex flow problems "remain elusive" (71).

Are PINNs becoming FEM?

ELM-FBPINN

$$m\frac{d^2u}{dt^2} + \mu\frac{du}{dt} + ku = f$$

$$\hat{u}(t, \mathbf{a}) = \sum_{j}^{J} w_{j}(t) \sum_{k}^{K} a_{jk} \phi(t, \boldsymbol{\theta}_{jk})$$

$$L(\mathbf{a}) = \sum_{i}^{N} \left(\left[m \frac{d^{2}}{dt^{2}} + \mu \frac{d}{dt} + k \right] \hat{u}(t_{i}, \mathbf{a}) - f(t_{i}) \right)^{2}$$

$$= \|M\mathbf{a} - \mathbf{f}\|^{2}$$

$$\Rightarrow A\mathbf{a} - \mathbf{b} = \mathbf{0}$$

 $A: JK \times JK$ **b**: JK (sparse & symmetric)

Finite element method

$$m\frac{d^2u}{dt^2} + \mu\frac{du}{dt} + ku = f$$

$$\hat{u}(t, \mathbf{a}) = \sum_{j}^{J} a_{j} \phi_{j}(t)$$

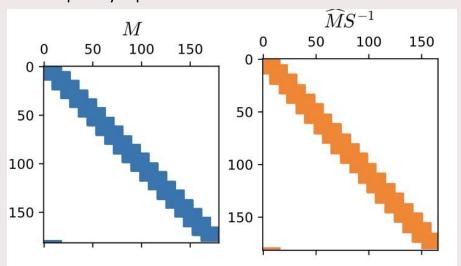
$$\int_0^T \phi_i(t) \left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \widehat{u}(t, \mathbf{a}) dt = \int_0^T \phi_i(t) f dt \ \forall i = 0, ..., J$$

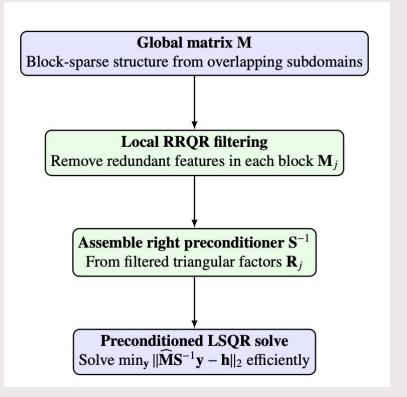
$$\Rightarrow (-mL + \mu D + kM) \mathbf{a} = \mathbf{b}$$

$$L, D, M: J \times J$$
 b: J (sparse & symmetric)

Can we do better i.e. how about preconditioning?

Idea: filter the redundant features in each block then precondition directly the least squares problem
Sparsity is preserved.



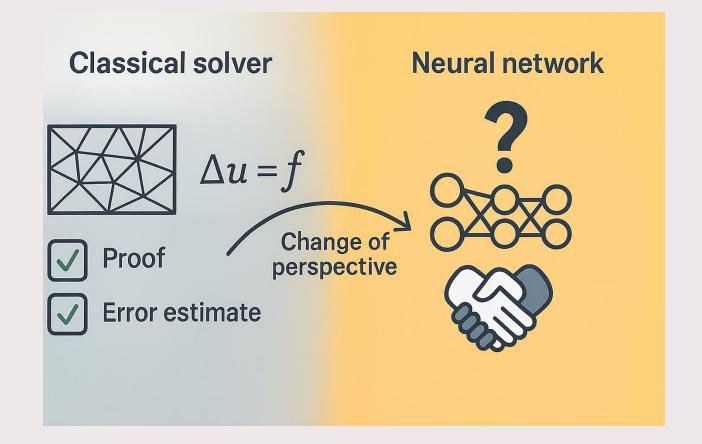


Local feature filtering for scalable and well-conditioned Random Feature Methods JW van Beek, V Dolean, B Moseley, CMAME, 2025.

Takeaways

- From optimization to linear algebra: reframing learning as a *numerical linear algebra* problem enables new algorithmic insights and requires new methodologies.
- Scalability & robustness: extending to multilevel and overlapping decompositions could improve performance in large-scale or high-dimensional settings.
- **Acceleration & theory:** GPU implementations and convergence-rate analysis are key next steps.
- Beyond linear problems: the framework naturally extends to nonlinear PDEs via Newton-type iterations.

A change in perspective



Hybrid future

The integration of machine learning (Keplerian paradigm) and more general artificial intelligence technologies with physical modelling based on first principles (Newtonian paradigm) will impact scientific computing in engineering in fundamental ways. (Stefan Kurz, ETH Zurich)

