TRANSFORMERS FOR MATHEMATICAL DISCOVERY
LEARNING COLLATZ SEQUENCES

FRANCOIS CHARTON, ENPC,AXIOM

LLM ARE BAD AT ARITHMETIC

m Pretrained LLM struggle with integer addition
m Scratchpad, or chain-of-thought, is needed
m For length generalization, you need to tweak positional embedding (Abacus)
m Even worse with multiplication
m One operand must be short (3 digits in original ChatGPT , 5 digits nowadays)
m Length generalization needs even more problem specific tampering

m They cannot compose

m Tend to hallucinate/confabulate

EXACT ARITHMETIC ON ATRANSFORMER

m Supervised learning, can archive close to 100% accuracy
m Greatest common divisor (FC 2024), modular arithmetic (FC, Kempe, 2024)

m Tweaking training distributions
m Repeated examples
m Balanced output
m Small operands

= Functions with few outcomes

B pattern recognition vs regression

COLLATZ SEQUENCES

m Starting from a positive integer: u =n

m u=3ntlifnis odd

m u=n/2ifnis even
= Repeating, we generate an integer sequence, (u). .
= One known cycle : |, 4, 2,1

m Famous conjecture: no matter the n you start with, you always reach the 1,4, 2, | cycle

LONG COLLATZ STEPS

m Start with an odd integer n
m don — (3n+1)/2 as many times as you can (k times)
m don — n/2 as many times as you can (k' times)

m call it k(n), the Long Collatz successor of n

m Starting with 27, we have :
m (327+1)/2=82/2=4l
m (341+1)/2=124/2 =62 (k=2)
B 62/2=31=«k(27)
m here k=2,k’=I

LONG COLLATZ STEPS

= Suppose n =2m — |, with m odd,
m the binary representation of n+| = 2“m, ends in k Os

m the binary representation of n ends in k Is
s (3n+1)2=32"m- |
m The first loop transforms n into 3*m — |, an even number
m k' is the largest power of two dividing 3m — |

m x(n)=@m-—1)/2¥

COMPUTING LONG COLLATZ STEPS

The computation of long Collatz successors involves two loops
m n — (3n+1)/2 repeated k times (or until the result is even)

B n — n/2,repeated k' times (or until the result is odd)

k is the number of ones at the right of the binary representation of n

k’ is the number of zeroes at the right of the binary representation of the apex
m 27=11011,k=2

m Two iterations in the first loop:27 — 41 — 62 =11110,,k'=I

m One iteration in the second loop: 62 — 31 = k(27)

LEARNING LONG COLLATZ STEPS

m Encode n and k(n) as sequences of digits in some base B
= We will play with B from 2 to 57
m Sample uniform odd integers up to 10'2
m 5.10'" possible inputs, no memorization, overfit, overlap between train and test set, will take place
m Train transformers with 4 layers, dimension 256, and 8 attention heads
m By minimizing the cross-entropy of predicted tokens (a glorified Hamming distance)
m The model knows nothing about maths, it just learns to translate
m Code available on GitHub: f-charton/Int2Int

m Runs on a 3GB GPU,in a few hours (3 minutes per epoch of 300k examples)

TRANSFORMERS KNOW MORETHAN THEY CAN TELL
LEARNING COLLATZ SEQUENCES (FC,A. Narayanan,ArXiv 2511:1081 1)

m A complex arithmetic function n — (3 (n+1) /2% -1) / 2¥, with k and k’ functions of n
m A regression-like problem: over the 5.10'' possible inputs, there are 2.53x10'" different outcomes

m Learned like a translation task: the model is shown examples, tries to imitate them

m Can transformers, notoriously bad at arithmetic, handle this?

AWALK IN THE PARK

m The best models achieve an accuracy of 99.8% (about 250 errors our of 100 000 test examples)
m Correct prediction = exact prediction of the successor, encoded in base B

m 99.8% accuracy for bases 24 and 32
m Bases 8, 12, 16, 24, 32, 36 and 48 achieve more than 99.5% accuracy

m Bases divisible by 8 or 12, Collatz-compatible?

EVEN AND ODD BASES

Accuracy Bases

99.5+% 24, 16, 32, 36, 12, 48, 8

m Almost all even bases achieve 90+% accuracy 99 - 99.5% 4, 18, 56, 40
m The larger the power of two, the better the accuracy 95— 89% 6, 20, 26, B, 52, 2, 24, od
’ 91 - 95% 42, 22, 30, 14, 50, 34
m Odd bases achieve accuracies below 83%, 88 —89% 26, 46, 33
. 81 - 82% 9, 45, 38, 15, 17
= Aslow as 25% 70 - 71% 49, 47, 21, 27, 51, 39, 31, 41, 23, 7, 25

59 - 66% 57 (65%), 43 (59%)
55-56% 13,37, 19, 55, 29, 53, 35, 5
25-37% 11 (37%), 3 (25%)

Table 1: Model accuracy for different bases.
Bases listed by decreasing accuracy.

QUANTIZED ACCURACIES

80

m Learning curves are “quantized”

m Models using different bases go through the same
accuracy levels

m Accuracy changes in discrete steps
m when the model “gets it” 20

60

40

0 200 400 600 800 1000

Figure 1: Learning curves for bases 2 to 57
(accuracy vs epochs of 300,000 examples).

QUANTIZED ACCURACIES

100

= Accuracy levels correspond to inputs with the same residual modulo 2P 80

= Inputs with the same binary ending

. . . 60
m Inputs in those classes are predicted with 99+% accuracy

All other inputs with 1% or less 20
These inputs form a “learning pattern”

m 001 is learned first (25% accuracy) 20
m 1011l is learned second (37% accuracy)

m then 101 and so on 0

0 200 400 600 800 1000

Figure 1: Learning curves for bases 2 to 57
(accuracy vs epochs of 300,000 examples).

THE LEARNING PATTERN

m The model learns binary input classes, in a particular order
= 00I, 1011, 1101, OOI1II ..

m Independently of the base
m Accuracy is either 100% or 0%

m The learning pattern accounts for the quantized accuracies

m A property of the problem, not of the representation

TWO MYSTERIES

m How do odd base models do this?
m How does a base 27 model learn residuals mod 8 or [6?

m Experimental fact: these transformers cannot learn to convert from one base into another (except in simplest cases)

= Why this particular sequence?

WHY THESE RESIDUAL CLASSES?

m We are learning two successive loops, of length k and k’:
E n—(3ntl)/2
E n—n/2

m k can be guessed from the binary representation of n
m it is the number of ones to the right of it

m different values of k correspond to different binary residuals

m Could it be the same for k’?

m can we tell k’ from the binary representation of n?

WHY THE RESIDUAL CLASSES

Let k=1, the binary representation of n ends in 01, n=4m+1

After one pass in the first loop, we reach:
Bn+1)/2 = (12m+4)/2 = ém+2,

an even number so k’'=|

After one n — n/2 step, we reach 3m+1 and have two cases

= If mis even,nendsin00l,3m+I is odd, k=1, we are done

m Ifmisodd,nendsin 10l,3m+I| = 6q+4,is even, k’ 22,

= One more n — n/2 step gets us to 3q+2, and there are two more cases
m Ifqisodd,ie.nendsin [101,3q+2 is odd, k’=2, we have the successor

n Else n ends in 0101, we reach 6p+2, k’ 23, then 3p+1, k’>2, we have been there before...

WHY THE RESIDUAL CLASSES!?

For k=1, the binary sequence ends in O]
m Ifitendsin 00l, k'=I

m Ifitendsin 110l k=2

m Ifitendsin 00101,Kk=3 ..

Let S=..0101010101, B the binary sequence representing n,and M the longest right match between S and B
We know that B ends in 01, so the length of M is at least two.

m Ifitistwo:B ends in 001:k’=I
m Ifitisthree:Bendsin I101]: k=2
m Andsoon..

We can tell k and k’ from the binary representation of n

WHY THE RESIDUAL CLASSES!?

We could prove a theorem

k can be read from the k+1 last bits of the binary representation of n (# of Is)

k’ can be read from the next k’ bits, longest match with a particular binary sequence
H, = 10,H,= 111000,H, = 111101101000010010.
parities of 2P mod 3¥, length Phi(k)

In the learning pattern, all models learn the long Collatz step for specific values of k and I,

in increasing values of k+k’
as a bonus, we learned useful facts about the distribution of k and k’ (independent power laws)

WHY THE RESIDUAL CLASSES!?

H =01,
H,=011100,
H,=01111011010000100]

We define the infinite binary sequence S=Hk*0l",

k’ is the longest right match between B and S, minus k

If n ends in 001 1010000100101 11, we have k=3, and k’'=14

THE LEARNING PATTERN

m Models learn k and k’ in order of k+k’

m First learn k=k’=1 (001), 25% accuracy

m Then learn (k,K)= (2,1) (1011),37.5% accuracy

m Thenlearn (1,2),(3,1) (1101 and 001 I I'), 55% accuracy
m The learning pattern is independent of the base

m But even bases have an edge

m A property of the Collatz sequence

CANWE DO BETTER? CHANGING INPUT DISTRIBUTION

Evenbases Uniform Log-uniform Baseline | Oddbases Uniform Log-uniform Baseline

2 93.9 97.6 99.8 33 0 02 89.1
. 16 98.5 99.2 99.7 9 0.1 03 82.8

m Since the most common cases are 12 99.8 99.6 99.7 17 0 0 823
. 36 98.9 99.5 99.7 27 1.1 13 71.8

learned first, can we improve 2% 100 100 99.7 45 0 0 7.8

. 48 100 99.9 99.6 47 0 0 71.7

performance by oversampling the rarer 4 96.7 910 99.4 51 0 0 e

56 98.8 99.5 99.3 51 0 0 71.6

cases!’ 8 98.7 97.0 99.3 41 0 0 715

40 98.6 99.4 99.2 49 0 0 713

m Uniform, log-uniform distribution of k (K’ 20 98.6 97.0 98.9 15 0 0 712

o 4 N . 6 98.7 99.7 98.8 25 0 0 70.8

still distributed as 1/2) in the training set 28 97.6 96.5 98.7 31 0 0 67.9

2 97.9 98.4 97.7 23 0 0 62.0

m A regular distribution of k and k’ in the test 18 982 99.5 97.3 39. 0 0 56.3

44 94.5 98.2 96.5 43 0 0 56.2

set 52 94.9 94.7 96.4 13 0 0 56.2

4 90.6 95.8 94.7 29 0 0 56.1

; o 30 90.9 93.0 93.7 57 0 0 56.1

u Dlsappomtlng results 10 87.0 90.7 93.6 53 0 0 56.1
14 86.1 95.5 932 19 0 0 56.0

m Imbalance matters! 54 89.6 97.3 90.3 35 0 0 55.9

2 718 89.0 89.7 5 0 0 55.8

50 493 87.2 89.5 37 0 0 377

34 85.7 88.0 89.2 55 0 0 37.6

2 84.8. 80.0 82.7 11 0 0 37.3

38 72.6 82.3 82.5 7 0 0 36.9

46 712 82.6 82.5 3 0 0 25.2

Table 4: Predicting the long Collatz steps with different training set distributions.

CANWE DO BETTER? PREDICTING KAND K’

m Predicting k and k’: turning the problem into a classification task
m An easier problem: instead of computing the long Collatz step, we only compute the loop length

= Amounts to finding common suffixes in binary representation

CANWE DO BETTER? PREDICTING KAND K’

m Power of two bases achieve 100%
accuracy

m Other even bases achieve lower
performance than in the previous
experiments

m Odd bases achieve 25% (always
predict I,I)

m The learning pattern is the same

m Somehow, a harder problem helps
learn

m More signal?

Bases Accuracy Correct predictions (k,k’)

40 99.8% all (k-k’) for k + k' < 12, (12,1)

12 99.1% all (k-k’) for k + k' < 10, (10,1)

56 98.3% all (k-k’) fork + k' < 9,(9,1)

20,44,28,52 90.1% (1-1,2,3,4,5), (2-1,2,3,4), (3-1,2,3), (4-1,2), (5,1), (6,1)

36 88.8% (1-1,2,3,4,5), (2-1,2,3,4), (3-1,(2,3), (4-1,2), (5-1), (6-1) (92%)
10 81.5% 1,1-3), (1,4), (2,1-2), (2,3), (3,1), (3,2), (4,1), (5,1) (90%)
14, 50, 54 72% (1-1,2,3), (2-1,2), (3-1), (4-1)

34,22 71.5% (1-1,2,3), (2-1,2), (3-1), (4-1) (95%)

38 70% (1-1,2,3), (2-1,2), (3-1), (4-1) (90%)

42,26, 18 69% (1-1,2,3), (2-1,2), (3-1), (4-1) (75%)

46, 30 56.5% (1-1,2), 2-1), (3-1)

Table 3: Predicting (k-k’). Model predictions for even bases, after
500 million examples. Accuracy below 98% in red.

CANWE DO BETTER? CONVERT FROM ONE BASE INTO ANOTHER

m From 4,12,22,36,42,56,3,9,27,11,15,13,31,43
= Into 2,8,32,24

m 98% accuracy: base 4 to base 2,8 and 32, and base 12 to 24
m 47% accuracy: base 4 to 24

m | 1% accuracy: base 36 into 24

m All others achieve less than 0.2% accuracy

UNDERSTANDING ERRORS

m Select a trained model

= Run it on 100,000 random test cases (most probably not seen during training, but in-domain)

m Investigate errors, by comparing wrong predictions to correct values

ERRORS IN OUR BEST MODELS

m Base 24:243 errors out of 100,000 test examples,

m Most errors happen for large values of k,
m 210 errors (out of 243) have k28,

m the model always fails when k21 |
m The ratios between model prediction p and correct value t are close to |

m When wrong, models remain roughly right: 84% of errors are within 1% of the correct value

m No hallucination

ERROR IN OUR BEST MODELS

= M o d € I P re d ictions an d correct so I utions, Errors Prediction length Correct tokens Correct prefix =~ Correct suffix

encoded in the base, share more than Base 24 243 94 45 2.1 23
H Base 32 265 8.9 4.2 1.9 2.1
half their tokens Base 16 259 1.1 5.8 2.7 2.7
. Base 8 479 14.5 8.0 3.5 3.6
m Correct solution (base 24) Base 48 399 & 40 19 2.0
Base 36 287 7.7 3.3 1.5 1.6
[4,21,20,6,7, 3,20,2,20, |], Base 12 315 11.7 6.1 2.6 2.9
[Model Pr‘ediction Table 2: Prediction errors for different good bases. Average length of predictions, number of tokens

in agreement between prediction and target.

[4,21,20,6,7,8,8, 2,20, I]

ERROR IN OTHER BASES - MORE QUANTIZATION

0.08
2000
8 8

16 1000 0.05 0.66,
I 10.11 0.441 1.3
l 1 NI A)

0.15
| 0.66

l LJl. i

Figure 2: Distribution of p/t: base 26 (all model Figure 3: Distribution of p/t: base 38 (all model
errors) errors)

ERRORS IN ODD BASES -TOO MANY EVEN PREDICTIONS

m All outputs should be odd
m En even bases, less than 5% of model errors are even: errors have the correct parity

m In odd bases, in 85 to 90% of model errors, an even number is predicted, way more than chance!

ERRORS IN ODD BASES - POWER OF 2 ERRORS

m In odd bases, in 70 to 80% of errors, the model predicts the correct solution times a small power of two
m The model underestimates k’

m These errors happen for specific values of k and K’
m Values of k where the model can predict k’=1, but not all values of kK’
m All (99+%) inputs associated with large k’ and that value of k end up as power of 2 errors

m The model then uses for k’ the largest value it can predict correctly

AN EXAMPLE IN BASE 27

m /1% accuracy, power of two errors account of 75.5% of model errors

m The model predicts correctly inputs with
= k=l and k=1,2,3,
m k=2and K=1,2,
m k=3 and 4, for k'=I
= Power of two errors happen for
m For k=I,k’>3.The model uses k’=3 (largest correct value)
m For k=1, k’=6, the model will predict 8 k(n), for k'=4 the model predicts 2 k(n)
m For k=2,k’>2.The model uses k'=2
m For k=3 and 4, k’>1.The model uses k=1

ERRORS IN EVEN BASES

m A similar quantization exists
m Buterrors are “near power of two errors” 5

m The model insists (wrongly) on predicting an odd integer wrong K
m Data distribution idiosyncracies
= Sometimes, the model predicts t/BX 1/26 replica g

B the end of sequence token is predicted early 7 0.08

These account for about 80% of model errors 0.15 2

Happen when predicting large I, for values of k the model , I | ffGAA) T i .

can predict o
m K is predicted as the largest k’ the model can predict Figure 2: Distribution of p/t: base 26 (all model

errors)

HARD ERRORS

066 k-1 predictions

= Remaining errors follow similar patterns: k-2
m ks underestimated by a few units i
m ratios r = p/t ~ (2/3)* k-3 0294027
m sometimes divided by B I 115[13 »

Figure 4: Distribution of p/t: base 26 (all model
errors, excluding near power of two)

These happen for large k that models cannot predict
k is then predicted as the largest k where the model can oot

redict (k, |
P (1) I/B replica
0.02

m K is predicted as |
13

8| 5.3

Figure 6: Distribution of p/t: base 27 (all model
errors, excluding power of two)

A HIERARCHY OF ERRORS

m Models learn to classify inputs with particular values of k and Kk’
m from the binary representation of n
m this is why even bases perform better

® Atany point in training, k is learned up to a value k __ and for each k, k' up to a value k',
® Allinput with k <k ~ and k2K’ are predicted as f(k K\ masd”
m Allinputs with k > kK _are predlcted as f(k__,1)

This accounts for more than 90% or errors, in all bases, throughout training

CONCLUSIONS

m We achieve surprisingly high performance: learning arithmetic is not always hard

m The model learns a mathematical property of the problem (the base 2 decomposition)
m Even when the input is represented in an odd base
m Math transformers do not confabulate/hallucinate

m A consequence of supervised learning

m Almost all model errors are explainable, the model knows more than it can tell

WHAT HAVE WE DONE!?

m We trained models on a problem we can solve
m varying model parameters: the base used for representation
m Noticed patterns, which we tried to interpret
® a new understanding of the problem; the theorem on binary representation
B We learned something new about the problem
=
m Analysis of error provides further insight on what it happening

m Models are not black boxes, they can be reversed engineered
m It takes some work

