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LLM ARE BAD AT ARITHMETIC

◼ Pretrained LLM struggle with integer addition
◼ Scratchpad, or chain-of-thought, is needed

◼ For length generalization, you need to tweak positional embedding (Abacus)

◼ Even worse with multiplication
◼ One operand must be short (3 digits in original ChatGPT , 5 digits nowadays)

◼ Length generalization needs even more problem specific tampering

◼ They cannot compose

◼ Tend to hallucinate/confabulate



EXACT ARITHMETIC ON A TRANSFORMER

◼ Supervised learning, can archive close to 100% accuracy

◼ Greatest common divisor (FC 2024), modular arithmetic (FC, Kempe, 2024)

◼ Tweaking training distributions 
◼ Repeated examples

◼ Balanced output

◼ Small operands

◼ Functions with few outcomes
◼ pattern recognition vs regression



COLLATZ SEQUENCES

◼ Starting from a positive integer: u0=n
◼ u1=3n+1 if n is odd

◼ u1=n/2 if n is even

◼ Repeating, we generate an integer sequence, (ui)i∊ℕ 

◼ One known cycle : 1, 4, 2,1

◼ Famous conjecture: no matter the n you start with, you always reach the 1, 4, 2, 1 cycle



LONG COLLATZ STEPS

◼ Start with an odd integer n 
◼ do n → (3n+1)/2 as many times as you can (k times)
◼ do n → n/2  as many times as you can (k’ times)
◼ call it 𝛋(n), the Long Collatz successor of n

◼ Starting with 27, we have : 
◼ (3.27+1) / 2 = 82 / 2 = 41
◼ (3.41+1) / 2 = 124 / 2 = 62 (k=2)
◼ 62 / 2 = 31 = 𝛋(27)
◼ here k=2, k’=1



LONG COLLATZ STEPS

◼ Suppose n = 2km – 1, with m odd, 
◼ the binary representation of n+1 = 2km, ends in k 0s

◼ the binary representation of n ends in k 1s

◼ (3n+1)/2 = 3.2k-1m – 1

◼ The first loop transforms n into 3km – 1, an even number

◼ k’ is the largest power of two dividing 3km – 1

◼ 𝜅(n) = (3km – 1) / 2k’



COMPUTING LONG COLLATZ STEPS

◼ The computation of long Collatz successors involves two loops
◼ n ⇾ (3n+1)/2 repeated k times (or until the result is even)

◼ n ⇾ n/2, repeated k’ times (or until the result is odd)

◼ k is the number of ones at the right of the binary representation of n

◼ k’ is the number of zeroes at the right of the binary representation of the apex
◼ 27 = 110112, k=2

◼ Two iterations in the first loop: 27 ⇾ 41 ⇾ 62 = 111102 , k’=1

◼ One iteration in the second loop: 62 ⇾ 31 = 𝜅(27)



LEARNING LONG COLLATZ STEPS

◼ Encode n and 𝛋(n) as sequences of digits in some base B
◼ We will play with B from 2 to 57

◼ Sample uniform odd integers up to 1012 
◼ 5.1011 possible inputs, no memorization, overfit, overlap between train and test set, will take place

◼ Train transformers with 4 layers, dimension 256, and 8 attention heads
◼ By minimizing the cross-entropy of predicted tokens (a glorified Hamming distance)

◼ The model knows nothing about maths, it just learns to translate

◼ Code available on GitHub: f-charton/Int2Int
◼ Runs on a 3GB GPU, in a few hours (3 minutes per epoch of 300k examples)



TRANSFORMERS KNOW MORE THAN THEY CAN TELL 
LEARNING COLLATZ SEQUENCES    (FC, A. Narayanan, ArXiv 2511:10811)

◼ A complex arithmetic function n ⇾ (3k (n+1) / 2k -1) / 2k’ , with k and k’ functions of n

◼ A regression-like problem: over the 5.1011 possible inputs, there are 2.53x1011 different outcomes

◼ Learned like a translation task: the model is shown examples, tries to imitate them

◼ Can transformers, notoriously bad at arithmetic, handle this?



A WALK IN THE PARK

◼ The best models achieve an accuracy of 99.8% (about 250 errors our of 100 000 test examples)
◼ Correct prediction = exact prediction of the successor, encoded in base B

◼ 99.8% accuracy for bases 24 and 32

◼ Bases 8, 12, 16, 24, 32, 36 and 48 achieve more than 99.5% accuracy

◼ Bases divisible by 8 or 12, Collatz-compatible?



EVEN AND ODD BASES

◼ Almost all even bases achieve 90+% accuracy
◼ The larger the power of two, the better the accuracy

◼ Odd bases achieve accuracies below 83%, 
◼ As low as 25%



QUANTIZED ACCURACIES

◼ Learning curves are “quantized”
◼ Models using different bases go through the same 

accuracy levels
◼ Accuracy changes in discrete steps
◼ when the model “gets it”



QUANTIZED ACCURACIES

◼ Accuracy levels correspond to inputs with the same residual modulo 2p

◼ Inputs with the same binary ending
◼ Inputs in those classes are predicted with 99+% accuracy
◼ All other inputs with 1% or less
◼ These inputs form a “learning pattern”
◼ 001 is learned first (25% accuracy)
◼ 1011 is learned second (37% accuracy)
◼ then 1101 and so on



THE LEARNING PATTERN

◼ The model learns binary input classes, in a particular order
◼ 001,  1011, 1101,  00111 ...

◼ Independently of the base

◼ Accuracy is either 100% or 0%

◼ The learning pattern accounts for the quantized accuracies

◼ A property of the problem, not of the representation 



TWO MYSTERIES

◼ How do odd base models do this?
◼ How does a base 27 model learn residuals mod 8 or 16?

◼ Experimental fact: these transformers cannot learn to convert from one base into another (except in simplest cases)

◼ Why this particular sequence?



WHY THESE RESIDUAL CLASSES?

◼ We are learning two successive loops, of length k and k’:
◼ n → (3n+1) / 2 

◼ n → n / 2 

◼ k can be guessed from the binary representation of n
◼ it is the number of ones to the right of it

◼ different values of k correspond to different binary residuals

◼ Could it be the same for k’?
◼ can we tell k’ from the binary representation of n?



WHY THE RESIDUAL CLASSES

Let k=1, the binary representation of n ends in 01, n=4m+1

After one pass in the first loop, we reach:
(3n+1)/2 = (12m+4)/2 = 6m+2, 
an even number so k’≥1

After one n ⇾ n/2 step, we reach 3m+1 and have two cases
◼ If m is even, n ends in 001, 3m+1 is odd, k’=1, we are done
◼ If m is odd, n ends in 101, 3m+1 = 6q+4, is even, k’ ≥2, 
◼ One more n ⇾ n/2 step gets us to 3q+2, and there are two more cases

◼ If q is odd, i.e. n ends in 1101, 3q+2 is odd, k’=2, we have the successor

◼ Else n ends in 0101, we reach 6p+2, k’ ≥3, then 3p+1, k’>2, we have been there before...



WHY THE RESIDUAL CLASSES?

For k=1, the binary sequence ends in 01
◼ If it ends in 001, k’=1
◼ If it ends in 1101, k’=2
◼ If it ends in 00101, k’=3 ...

Let S=...0101010101, B the binary sequence representing n, and M the longest right match between S and B
We know that B ends in 01, so the length of M is at least two.
◼ If it is two: B ends in 001: k’=1
◼ If it is three: B ends in 1101: k’=2
◼ And so on...

We can tell k and k’ from the binary representation of n



WHY THE RESIDUAL CLASSES?

We could prove a theorem
◼ k can be read from the k+1 last bits of the binary representation of n (# of 1s)
◼ k’ can be read from the next k’ bits, longest match with a particular binary sequence 

◼ H1 = 10, H2 = 111000, H3 = 111101101000010010. 
◼ parities of 2p mod 3k, length Phi(k)

In the learning pattern, all models learn the long Collatz step for specific values of k and k’, 
◼ in increasing values of k+k’
◼ as a bonus, we learned useful facts about the distribution of k and k’ (independent power laws)



WHY THE RESIDUAL CLASSES?

H1=01, 

H2=011100, 

H3=011110110100001001

We define the infinite binary sequence S=Hk
*01k,

k’ is the longest right match between B and S, minus k

If n ends in 001101000010010111, we have k=3, and k’=14



THE LEARNING PATTERN

◼ Models learn k and k’ in order of k+k’
◼ First learn k=k’=1 (001), 25% accuracy

◼ Then learn (k,k’)= (2,1) (1011), 37.5% accuracy

◼ Then learn (1,2), (3,1) (1101 and 00111), 55% accuracy

◼ The learning pattern is independent of the base
◼ But even bases have an edge

◼ A property of the Collatz sequence 



CAN WE DO BETTER? CHANGING INPUT DISTRIBUTION

◼ Since the most common cases are 
learned first, can we improve 
performance by oversampling the rarer 
cases?
◼ Uniform, log-uniform distribution of k (k’ 

still distributed as 1/2k’) in the training set

◼ A regular distribution of k and k’ in the test 
set

◼ Disappointing results
◼ Imbalance matters!



CAN WE DO BETTER? PREDICTING K AND K’

◼ Predicting k and k’: turning the problem into a classification task

◼ An easier problem: instead of computing the long Collatz step, we only compute the loop length

◼ Amounts to finding common suffixes in binary representation



CAN WE DO BETTER? PREDICTING K AND K’

◼ Power of two bases achieve 100% 
accuracy

◼ Other even bases achieve lower 
performance than in the previous 
experiments

◼ Odd bases achieve 25% (always 
predict 1,1)

◼ The learning pattern is the same

◼ Somehow, a harder problem helps 
learn
◼ More signal?



CAN WE DO BETTER? CONVERT FROM ONE BASE INTO ANOTHER

◼ From 4, 12, 22, 36, 42, 56, 3, 9, 27, 11, 15, 13, 31, 43

◼ Into 2, 8, 32, 24

◼ 98% accuracy: base 4 to base 2,8 and 32, and base 12 to 24

◼ 47% accuracy: base 4 to 24

◼ 11% accuracy: base 36 into 24

◼ All others achieve less than 0.2% accuracy



UNDERSTANDING ERRORS

◼ Select a trained model

◼ Run it on 100,000 random test cases (most probably not seen during training, but in-domain)

◼ Investigate errors, by comparing wrong predictions to correct values



ERRORS IN OUR BEST MODELS

◼ Base 24: 243 errors out of 100,000 test examples, 

◼ Most errors happen for large values of k, 
◼ 210 errors (out of 243) have k≥8, 

◼ the model always fails when k≥11

◼ The ratios between model prediction p and correct value t are close to 1

◼ When wrong, models remain roughly right: 84% of errors are within 1% of the correct value

◼ No hallucination



ERROR IN OUR BEST MODELS

◼ Model predictions and correct solutions, 
encoded in the base, share more than 
half their tokens

◼ Correct solution (base 24)
[4, 21, 20, 6, 7, 3, 20, 2, 20, 1], 

◼ Model prediction
[4, 21, 20, 6, 7, 8, 8, 2, 20, 1]



ERROR IN OTHER BASES -  MORE QUANTIZATION



ERRORS IN ODD BASES  - TOO MANY EVEN PREDICTIONS

◼ All outputs should be odd

◼ En even bases, less than 5% of model errors are even: errors have the correct parity

◼ In odd bases, in 85 to 90% of model errors, an even number is predicted, way more than chance!



ERRORS IN ODD BASES - POWER OF 2 ERRORS

◼ In odd bases, in 70 to 80% of errors, the model predicts the correct solution times a small power of two
◼ The model underestimates k’

◼ These errors happen for specific values of k and k’
◼ Values of k where the model can predict k’=1, but not all values of k’

◼ All (99+%) inputs associated with large k’ and that value of k end up as power of 2 errors 

◼ The model then uses for k’ the largest value it can predict correctly



AN EXAMPLE IN BASE 27

◼ 71% accuracy, power of two errors account of 75.5% of model errors
◼ The model predicts correctly inputs with

◼ k=1 and k’=1,2,3,
◼ k=2 and k’=1, 2, 
◼ k=3 and 4, for k’=1

◼ Power of two errors happen for 
◼ For k=1, k’>3. The model uses k’=3 (largest correct value)

◼ For k=1, k’=6, the model will predict 8 𝛋(n), for k’=4 the model predicts 2 𝛋(n)

◼ For k=2, k’>2. The model uses k’=2 
◼ For k=3 and 4, k’>1. The model uses k’=1



ERRORS IN EVEN BASES

◼ A similar quantization exists
◼ But errors are “near power of two errors”
◼ The model insists (wrongly) on predicting an odd integer
◼ Data distribution idiosyncracies

◼ Sometimes, the model predicts t/Bk

◼ the end of sequence token is predicted early 
◼ These account for about 80% of model errors
◼ Happen when predicting large k’, for values of k the model 

can predict
◼ k’ is predicted as the largest k’ the model can predict

1/26 replica

wrong k’



HARD ERRORS

◼ Remaining errors follow similar patterns: 
◼ k is underestimated by a few units
◼ ratios r = p/t ~ (2/3)a 
◼ sometimes divided by B

◼ These happen for large k that models cannot predict
◼ k is then predicted as the largest k where the model can 

predict (k,1)
◼ k’ is predicted as 1

k-1 predictions

k-2

k-3

1/B replica



A HIERARCHY OF ERRORS

◼ Models learn to classify inputs with particular values of k and k’
◼ from the binary representation of n 
◼ this is why even bases perform better

◼ At any point in training, k is learned up to a value kmax and for each k, k’ up to a value k’k,max◼ All input with k ≤ kmax and k’≥k’k,max are predicted as f(k,k’k,max),◼ All inputs with k > kmax are predicted as f(kmax,1)

This accounts for more than 90% or errors, in all bases, throughout training



CONCLUSIONS

◼ We achieve surprisingly high performance: learning arithmetic is not always hard

◼ The model learns a mathematical property of the problem (the base 2 decomposition)
◼ Even when the input is represented in an odd base

◼ Math transformers do not confabulate/hallucinate
◼ A consequence of supervised learning

◼ Almost all model errors are explainable, the model knows more than it can tell 



WHAT HAVE WE DONE?

◼ We trained models on a problem we can solve
◼ varying model parameters: the base used for representation

◼ Noticed patterns, which we tried to interpret
◼ a new understanding of the problem; the theorem on binary representation

◼ We learned something new about the problem
◼

◼ Analysis of error provides further insight on what it happening
◼ Models are not black boxes, they can be reversed engineered
◼ It takes some work


